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1. Introduction 

Nanoparticles are not a human invention but have always been present in the 

environment, particularly as ash, desert dust, metal oxides from weathering of rocks, 

aerosols, etc. (Baker et al., 2014). Indeed, even some plants are able to synthesize 

nanoparticles as they are capable of metal ion uptake in polluted environments 

followed by subsequent reduction to the zero-valent metal form. Despite organisms 

evolving in nanomaterial-rich environments it is not known how they will be affected 

by the presence of increasing amounts of engineered nanoparticles (ENP) produced 

by various nano-biotech industries and now widely used in various fields, including 

medicine, cosmetics, computer hardware manufacturing, agriculture, dietary 

supplements, etc. (Burić et al., 2015). Indeed, because of their already widespread 

application as catalysts, drug delivery devices and antimicrobials etc., by 2015 the 

fields in which they are used were foreseen to reach a value $1.5 trillion (Nel et al., 

2006). Considering the rapid development of those fields it is safe to assume that 

number will only keep growing in the future.  

As a consequence of their production and use becoming greater year after 

year it is inevitable that a certain quantity of ENP will find its way to soil and 

wastewater streams and eventually reach riverine, estuarine and marine ecosystems 

(Handy et al. 2008a; Klaine et al., 2008). Thus the interaction of ENP reaching the 

marine ecosystem with a diverse range of organisms is unavoidable. This scenario is 

especially pronounced near large population cities on estuaries and in coastal areas 

where significant amounts of wastewater, which are not necessarily treated to a 

significant degree, are discharged daily.  

With the increasing realization that ENP are entering brackish and coastal 

marine waters in ever greater quantities and the potential for impacting on organisms 

living in those environmental compartments, research evaluating the behavior and 

effects of various ENP in these environmental compartments has recently become 

the focus of much attention, particularly with increasing evidence indicating the 

toxicity of ENP to various organisms. It has recently been shown that sea urchin 

Arbacia lixula embryos exposed to low, environmentally relevant concentrations of 

silver nanoparticles (AgNP) showed a substantial increase of retarded larvae and 

undeveloped embryos (Burić et al., 2015). Similar results have also been reported for 

other urchin species including Sphaerechinus granularis and Paracentrotus lividus, 
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clearly indicating that ApNP negative effects may be broadly species independent. 

Apart from developmental defects, ENP have also been shown to cause a wide 

range of other negative effects including, for example, DNA damage in Acaryochloris 

marina exposed to TiO2 nanoparticles (Galloway et al., 2010) or carbon nanotube–

induced cytotoxicity in Dunaliella tertiolecta (Wei et al., 2010).  

However, while research addressing these issues is increasing, there are still 

many unanswered questions and we remain unable to predict the impact of 

nanoparticles in various ecosystems on key species. To address this in part, and 

bearing in mind the ability of AgNP to impact upon embryonal development, the 

present study focuses on determining the effect of AgNP on the sperm of sea urchin 

species Arbacia lixula in terms of modulating their ability to fertilize urchin eggs and 

how embryos subsequently develop.  

 

1.1 Nanoparticles 

During the 1970s and 80s the first studies on particles less than 100 nm in 

size began to appear. While they were initially known as „ultrafine particles“ (Hayashi 

et al., 1997), the term „nanoparticles” became more common during the ‘90s. 

Nanoparticles are defined as particles that have dimensions between 1-100 nm and, 

due to their novel properties (catalytic, antimicrobial, vector, conductive, UV blocking) 

due to size-based modulation of their electronic energy levels, have been used in 

various fields including medicine, electronics production, cosmetics, chemistry, etc. 

(Schmid, 2010). Specifically, this includes polymeric micelle nanoparticles that deliver 

drugs to tumors, cerium oxide nanoparticles that remove free oxygen radicals, 

ceramic silicon carbide nanoparticles that dispersed in magnesium produce a strong 

yet lightweight material, gold nanoparticles as catalysts to breakdown volatile organic 

pollutants, titanium dioxide or zinc oxide nanoparticles in sunscreens as protection 

from UV radiation, nanoscale silicon transistors used as on and off switches in 

processors for binary information storage. The Woodrow Wilson Database (2011) 

has listed 1,317 nanoparticle based consumer products on the market, of which 311 

contain silver nanoparticles (AgNP; Gambardella et al., 2015). Many of these 

products will likely contribute to the overall environmental load of AgNP and predicted 
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environmental concentrations of AgNP are already estimated to be between 0.03 and 

0.08 µg/ L in aquatic environments (Fabrega et al., 2011). 

By virtue of their broad and growing usage (especially in the cosmetics and 

food industries) and lack of data on their transformative and bioaccumulation 

properties, and hence their potential to lead to harmful effects, in 2009 the European 

Union implemented a new directive regarding the use of ENP as Regulation (EC) No. 

1223/2009, including the strict protocols to be implemented before ENP-containing 

cosmetics may be released on the market including the gathering of toxicological 

data and labeling requirements stating that the product contains particles smaller 

than 100 nm (nanoparticles) (EU, 2009). 

 

1.1.1. Properties  

Due to their small size nanoparticles have novel and interesting properties that 

have been observed and described. Primarily, ENP show properties that are 

intermediate between those of the corresponding bulk material (larger than one 

micrometer) and molecular structures. It is well-known that bulk material properties 

do not change depending to size or amount of material  (e.g. a cinder block of 10 cm3 

will not change color if the scale is increased to 1 m3, or a small plaquette of 24 karat 

gold will be as shiny as a bigger 24 karat gold piece). However as the material get 

smaller the ratio between surface and volume becomes bigger, the electronic band 

structure becomes modified and as a result its properties change dramatically. 

Moreover, as the material gets smaller the wave aspect of wave-particle duality 

become more apparent.  

Correspondingly, nanoscale materials behave differently from their bigger 

macroscopic counterparts at the fundamental property level. As stated by 

Hewakuruppu, Y. L. et al. (2015) This is particularly notable on the opto-electronic 

level where nanoparticles often produce unexpected optical properties since their 

valence or surface electrons are confined to different energy levels due to quantum 

effects resulting in nanoparticles interacting differently to light. Both size and shape 

influence electronic levels within nanomaterials. Silver nanoparticles’ colour varies 

from yellow (Ag spheres of 40 nm) to pale yellow/grey (Ag spheres 80 nm) to red (Ag 
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nanoprisms 100 nm) (Horikoshi and Serpone, 2013). A further example is how the 

size of gold particles influences its colour, namely bulk gold appears yellow while 12 

nm gold nanoparticles have a distinct red colour. Further, gold nanoparticles melt at 

significantly lower temperatures than bulk gold, for example, at 300°C for 2.5 nm gold 

nanoparticles, while bulk gold melts at 1064 °C (Buffat and Borel, 1976). 

Nanoparticles of zinc oxide and titanium dioxide recently found extensive use 

in sunscreen because of their UV absorbance properties (TiO2 at around 300 nm 

(UV-B) and ZnO at around 350 nm (UV-A) (Manaia et al., 2013). However, at the 

nanoscale, size also has a dramatic effect on the scattering of visible light. Peak 

scattering occurs when the particle size is equivalent to half of the visible light 

wavelength, assuming that the particles are uniformly dispersed as stated in Mie 

theory. In sunscreens, increased scattering occurs when the nanoparticles included 

in the formulation have sizes in the range of 200-300 nm give the so-called whitening 

effect. Thus sunscreen formulations tend to use TiO2 and ZnO nanoparticles in the 

20-50 nm range. 

As previously mentioned, the high surface to volume ratio results in enhanced 

catalytic properties whereby the rate of reactions may be increased by orders of 

magnitude. This includes, for example, cobalt nanoparticle assisted oxidation of 

cyclohexane into adiapic acid (precursor of nylon) or cobalt nanoparticle assisted 

hydrogenation of aromatic amines for the synthesis of pesticides and herbicides 

(Roucoux et. al., 2002).  

 

1.1.2. Characterization methods   

There are various characterization methods that have been used for determining 

nanoparticle size, structure, composition, surface chemistry, etc. in recent years. 

However, every method presents advantages and disadvantages, with none of them 

able to present an unequivocal characterization of a sample, hence requiring that 

more than one method be used when describing the physico-chemical properties of 

ENP. In this Secion the main characterization methods used in nanotechnology will 

be briefly discussed, while the interested reader is directed to more comprehensive 

texts for a more detailed discussion of the following methods (e.g. Tantra, 2016). 
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 One of the most important of these techniques is  dynamic light scattering (DLS). 

It is used to determine the size of small particles (0.002 to 2 microns), in a very 

diluted suspension or solution, experiencing Brownian motion. The sample is 

illuminated with a monochromatic light (usually laser) that has passed through a 

polarizer, and as a consequence of the small particles the light is scattered at various 

intensities. Those fluctuations in intensity are detected by a photosensitive detector 

and using the Stokes-Einstein relationship the particle radius can be deduced. The 

main advantages include: the evaluation is fast (from seconds to minutes), any 

suspension or solution that isn’t too viscous can be analyzed, and broad size range 

can be assayed. The main disadvantages include: interference due to dust, particle 

shape can only be obtained with some difficulty, and high resolution histogram of size 

distribution is not available. 

A second technique is scanning electron microscopy (SEM). The sample is 

illuminated by a beam of electrons that interacts with the atoms of the sample. The 

sample’s properties like composition, topography, etc. are determined by the 

detection of the signal in the form of scattered and secondary electrons and x-rays 

that have been generated. While images are of high resolution (better than 1 nm) and 

the 3D topography of the sample can be seen, this method is very time consuming 

and expensive. Furthermore, conductive surfaces are required for the very highest 

resolution work and internal structures in materials cannot be seen. 

An extremely important characterization technique is transmission electron 

microscopy (TEM) that can be used to provide 2-D imaging to give sample size, 

shape and crystallographic structure. For the latter, the beam of electrons interacts 

with the sample by diffraction. The diffraction intensity depends on the orientation of 

the planes of atoms. The deflected electrons are recorded by detectors and the 

crystal structure is determined. Use of TEM is however a time consuming process 

and the instrument is expensive. Furthermore, the sample can’t be frail and must be 

able to tolerate high vacuum and the impact of an electron beam. Moreover, the 

scanning footprint is very small, therefore the TEM technique may only show a few 

nanoparticles per unit area, hence this technique doesn’t give data about the 

ensemble but rather limited snapshots of the sample. High resolution transmission 

electron microscopy (HRTEM) is also available, making imaging at the atomic scale 

possible. 
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Atomic force microscopy (AFM) as a technique can be used to display vertical 

resolutions of less than 0.1 nm and horizontal resolutions of 1 nm and is based on a 

minute needle that is brought near, or into contact with, the sample and moved along 

its surface. As the needle is moved across the surface a laser tracks its movement 

(that follows the sample’s topography). The laser return time-signal deviation is used 

to convert the sample’s profile into a topographic map of the surface. This approach 

in atomic force microscopy is called contact mode although, while allowing the best 

resolution, the sample can be damaged by the needle tip. However, modern atomic 

force microscopes have two other modes: non-contact mode and tapping mode. In 

the first the tip hovers above the surface, as a consequence attraction forces are 

measured. This method is used for frail samples, hence its non-destructive nature. 

However the image resolution is poor. In tapping mode, as the name suggests, the 

tip is repeatedly tapped on the samples surface. This mode provides a balance 

between sample resolution and damage incurred by the sample. Physical properties 

of a single particle such as morphology or surface texture can be measured, as well 

as statistics regarding groups of particles. Atomic force microscopy can be performed 

in all media (solid, liquid or gas) as well in both ambient air and controlled 

surroundings (such as vacuum, nitrogen or argon gas). Furthermore, particles from 

1 nm to 5 µm in height can be measured in a single scan. 

A related technique is scanning tunneling microscopy (STM). This method is 

based on quantum tunneling. When a conductive tip is brought close (less than 10 

nm) to another conductive or semi-conductive surface there is a chance that 

electrons will “tunnel” or “jump” from the needle to the sample and vice versa, since 

their probability function may overlap. The fluctuation of tunneling electrons as the 

probe passes over the samples surface is rendered as an image. STM can show 

depth resolution up to 0.01 nm and lateral resolution of 0.1 nm. As with AFM, it can 

be used various media like: vacuum, air, liquid, specific gas, etc. and over a wide 

range of temperatures. However, extremely clean surfaces and ultra-sharp tips are 

required. 
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1.1.3. Fate and behavior in aquatic environments  

With entry of ENP into the environment, there are likely to quickly enter 

freshwater systems. In these systems, nanoparticle fate and behavior is strongly 

linked to their proprieties: size, shape, surface charge, functionalization and coating 

(Canesi and Corsi, 2016). Further, these physical and chemical characteristics have 

a strong impact on their interactions with living organisms and hence potential 

toxicity. From freshwater systems, ENP may be transported to brackish and coastal 

waters although more direct modes of entry are also possible including atmospheric 

deposition, rainwater run-off and wastewater streams (Figure 1; Baker et al., 2013) 

When ENP arrive in high salinity media various transformations can occur. A 

range of reactions can occur at the air-water interface (plankton absorption, 

aerosolization etc.). Secondly, they can be accumulated by different organisms 

causing accumulation and/or toxic effects. For example, the bivalve Mytilus 

galloprovincialis showed titanium accumulation in grills when exposed to titanium 

dioxide (TiO2; Della Torre et al., 2015). 

Further, they can dissolve and/or be transported through the water column 

making them bioavailable to pelagic organisms (through breathing, feeding, 

adsorption). An important aspect of ENP in terms of bioavailability are their 

agglomeration (weak forces like van der Waals bonding substances into 

agglomerates) or aggregation (strong chemical forces binding substances onto 

aggregates) characteristics (Tso et al., 2010). Aggregation and agglomeration are 

driven by 2 main factors. The first are the properties mentioned previously (size, 

surface charge etc.) while the second driver comprises several parameters of the 

media the nanoparticles are in, including pH, osmolarity (ionic strength), salinity and 

presence of natural organic matter (colloidal polymers yielded by algae known as 

exopolymeric substances or EPS showed notable capability of influencing 

aggregation; Canesi and Corsi, 2016). 

As individual ENP, agglomerates or aggregates may become encapsulated with 

organic matter and detritus, and may slowly sink to the sea bottom where they 

encounter further changes in temperature, organic matter and dissolved oxygen. 

Upon reaching the ocean floor they may be absorbed by benthic organism and 

subsequently promoting toxic effects in those organisms. Secondly, sedimentation or 
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formation of a biofilm may occur, while subsequently, due to benthic organism 

activity, bio-turbation and re-suspension may make the nanoparticles again available 

to pelagic organisms. 

 

 

Figure1. Fate and behavior of nanoparticles in aquatic environments (source: Baker 

et al., 2013). 

 

A further key process in the movement of ENP through the aqueous 

environment is their accumulation in one organism which is then eaten by another, 

thus providing a pathway into the food web and eventually biomagnifications up the 

food chain (Holbrook et al., 2008). This trophic transfer of ENP may eventually have 

consequences for human health should those organisms that may accumulate ENP 

be used as a food source, including bivalves and fish. 
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1.1.4. Uptake and bioaccumulation by aquatic animals  

Recently several studies have been conducted, showing ENP are capable of 

producing toxic effects, lethal and sub-lethal, including oxidative stress, development 

retardation, reduced fertilization rate, etc. Freshwater species including Daphnia 

magna, Lymnaea stagnalis and Caenorhabditis elegans treated with ENP showed a 

variety of sub-lethal effects such as digestive stress and reduced feeding (Croteau et 

al., 2011), bioaccumulation (Rosenkranz et al., 2009) and reduced swimming 

(Asghari et al., 2012). More recently, studies have focused on sea urchins with 

detailed investigations of the impact of engineered silver nanoparticles on embryonal 

development and negative impacts were noted for very low ENP concentrations 

(Burić et al., 2015). 

AgNP and silver ions (Ag+) were also used to treat 2 different species: 

Scrobicularia plana (bivalve) and Hediste diversicolor (polychaeta; Buffet et. al., 

2013). After 20 days of exposure both species showed statistically significant higher 

amounts of silver nanoparticles and silver ions in the organisms, thus indicating signs 

of bioaccumulation. Furthermore, as markers of oxidative stress, significantly higher 

glutathione S-transferase (GST), catalase (CAT) and expression of CSP (Central 

nervous system-specific proteins) were detected in both species (S. plana and H. 

diversicolor) exposed to both silver forms (nanoparticles and ions). In addition, higher 

SOD (superoxide dismutase) and TBARS (thiobarbituric acid reactive substances, as 

byproducts of lipid peroxidation) levels in H. diversicolor were observed, hence 

further indication of oxidative stress. In other similar work, the bivalve Mytilus 

galloprovincialis showed titanium accumulation in gills when exposed to titanium 

dioxide (TiO2) nanoparticles (Della Torre et al., 2015). 

Apart from filter feeders, studies have also shown that bacterial biofilms may 

significantly accumulate ENP (uptake of 60%). However I. obsolete had surprisingly 

low uptake (0.05%) despite its biofilm grazing habit (Ferry et. al., 2009). Cyprinodon 

variegates, the sheepshead minnow, has also been found to have a low uptake 

(Baker, T.J. et al., 2013). In similar studies, trophic transfer of metal oxide 

nanoparticles has been demonstrated by Gambardella et al. (2014). Paracentrotus 

lividus showed skeletal degradation and smaller larval growth when fed with 

nanoparticle loaded marine microalgae. Therefore it may be concluded that trophic 
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transfer and uptake of nanoparticles in the marine environment are complex 

mechanisms, and while possible, depends closely on uptake efficiency which is 

variable from organism to organism, hence more in-depth research is highly needed. 

 

1.2 Sea urchins in scientific research  

Sea urchins have found widespread use in marine research for their well-known 

biology, physiology and anatomy. In particular, urchins have been used in studies of 

embryonal development and immunology as aspects of their immune system 

functioning is analogous to the that of the human system in certain ways. 

Sea urchins belong to the phylum Echinodermata (including sea stars, crinoids, 

etc.) and class Echinoeidea, with the first fossils date back to the Ordovician era. The 

class name when translated into english means “like a hedgehog” because of their 

spines enveloping their bodies. Their habitat spectrum is vast, ranging from the 

littoral zone (1 m depth) to abyssal depths of 5000 m. Some species prefer rocky 

depressions, while others are able to live burrowing themselves into soft sediment 

(irregular sea urchins). In general, urchins are small, typically from 3 to 10 cm in 

diameter, yet some species found in the Indo-Pacific area can reach nearly 36 cm in 

diameter. Their color varies, with black, purple, blue and red sea urchins can be 

commonly found, however, white and multicolored sea urchins may also be found 

occasionally. Sea urchins are generally round or oval animals, and in the latter case 

can be lightly or greatly flattened along the oral and aboral axis. Their bodies can be 

divided into two main sections, the oral and the aboral pole.  

The oral pole is directed against the substrate and the oral cavity is covered by a 

peristomial membrane. Other structures that can be found in this region include the 

buccal podia (5 short modified podia) and the gills. The aboral region, also known as 

periproct, is a tiny and circular membrane containing a fluctuating amount of 

embedded plates (number varies from species to species) and the anal cavity, 

commonly found in the central region of the periproct. 

A distinctive sea urchin feature is the exoskeletal structure, made by flattened 

ossicles that have been sutured together. The skeletal plates form rows running from 

the oral pole to the aboral region. The exoskeletal structure has protruding spines 
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arranged more or less symmetrically that are used for protection, movement and 

raising the oral cavity off the sediment. The spines are several centimeters long, with 

the longest being found in the equatorial area and shorter ones at the poles. 

Secondary (shorter) spines can be found in the equatorial area in some urchins such 

as P. lividus. The spines are hollow, cylindrical, regenerable and frail, with a sharp 

point at the end. They are coated with an irritant and small barbs pointing towards the 

sharp end, therefore painful wounds can be inflicted if stepped on with enough force. 

Blunt spines can be found in some species (genus Colobocentrotus), moreover some 

species of the Echinothuridae family have poison coated spines located in the aboral 

region. 

Sea urchins, like other echinoderms in the early larvae stage, have bilateral 

symmetry, however with development their symmetry becomes radial and five-fold 

(Giudice, 1973). The spines and the podia are used in movement on hard and soft 

bottoms, in any direction. Movement is closely linked to feeding activity (in case of 

food abundance only 8 cm per day, although in oligotrophic areas there may be 

movement of up to 50 cm per day). Sea urchins have a well-developed scraping 

structure called Aristotle´s lantern that is used for feeding purposes. This organ is 

made of five calcareous plates called pyramids, arranged radially and pointing 

towards the oral cavity. The sharply ended pyramids are connected with transverse 

muscle fibers. Because of their grazing habits new tooth material is produced at a 

rate of 1.5 mm per week. Sea urchins are predominantly grazers, scraping algae with 

the highly developed Aristotle˙s lantern. Their main diet consists of algae, however 

animal material can be consumed. Conversely, urchins also represent prey, with 

starfish, eels and sea otters as their main predators. Coelomic fluid is the primary 

circulatory medium (gas exchange, internal transport and excretion) and sea urchins 

have a radial nervous system. Fertilization takes place in seawater after sperm and 

egg cells are released from 5 gonads directly into the sea. Brooding has been found 

in some sea urchin species, where the eggs are retained on the peristome or 

periproct and the spines are used to secure the fertilized eggs. Recently, sea urchins 

have been used as non-model organisms in a number of studies aimed at determing 

nanoparticle toxicity. 

Urchins present a number of advantages for use in marine research; they are 

very common organism in the littoral area and their sampling is trivial due to their 
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small size and sedentary lifestyle; their habitat is important because the highest 

concentrations of nanoparticles will likely be found in coastal waters due to various 

rainwater run-offs, surface freshwaters and wastewater streams. Further, they may 

be useful sentinels due to their grazing habits as bioaccumulation may occur if toxins 

or ENP are found in algae. Moreover their embryo and larvae stages are fairly short 

and simply counted via optical microscopy, and their fertilization is easily replicated in 

captivity. 
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2. Research scope 

Taking into consideration recent literature reports showing AgNP toxicity to 

both freshwater organisms and marine invertebrates including shellfish Mytilus sp. 

and sea urchins A. lixula, P. lividus and S. granularis as model organisms (Burić et 

al., 2012; Gomes et al., 2014; Burić et al., 2015) the present study focuses on 

extending these data to determining the impact of AgNP on sea urchin gametes. 

As shown by Burić et al. (2012) even low concentrations of silver nanoparticles are 

able to retard or stop regular P. lividus larvae development. Further, in that study, 

different sea urchin species showed different sensitivity to AgNP at various stages of 

their larval development. However AgNP treatment response by gametes such as A. 

lixula sperm have not been researched in detail to date. Therefore, the objective of 

this study was to synthesize AgNP of a known size, and subsequently treat A lixula 

sperm with various concentrations of these AgNP. Afterwards the fertilization rates 

would be measured and the percentages of normal, retarded, undeveloped and dead 

larvae would be determined after allowing embryonal development to proceed for a 

defined time period.  
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3. Materials and methods  

3.1 Chemicals  

Silver nitrate (AgNO3), tri-sodium citrate (C6H5O7Na3), potassium chloride 

(KCl)  of analytical grade purity were purchased from Sigma Aldrich (St. Louis, MO, 

USA). A Millipore Advantage System (Merck Millipore, Darmstadt, Germany) supplied 

ultrapure water (18 MΩ) used throughout the research. Filtered sea water (FSW) was 

obtained by means of filtering natural sea water (northern Adriatic Sea; salinity 38.1, 

pH 8.1) through Whatman 0.2 μm pore membrane filters (GE Healthcare Life 

Sciences, Little Chalfont, UK). 

 

3.2 Synthesis of silver nanoparticles  

AgNP were produced by the sodium citrate reduction method. Initially 21.2 mg 

of AgNO3 was diluted in 125 mL ultrapure water. The solution was heated until it 

began to boil and mixed with a magnetic stirrer. A 1% tri-sodium citrate aqueous 

solution was prepared by dissolving 0.5 g tri-sodium citrate into 50 mL of ultrapure 

water. Afterwards, 5 mL of this 1% solution was added to the boiling AgNO3 solution, 

and the mixture was held at 100oC until the color became pale yellow. The mixture 

was cooled to room temperature and was calculated to have a silver concentration of 

100 mg/L. 

 

The mechanism of the redox reaction is as follows: 

4Ag+ + C6H5O7Na3 + 2H2O  4Ag + C6H5O7H3 + 3Na+ + H+ + O2 (↑) 

 

3.3 Characterization of AgNP in ultrapure water with UV-Vis spectroscopy 

The sample for UV-Vis spectroscopy was prepared as follows. Previously 

prepared stock AgNP solution was diluted in ultrapure water to give final 

concentrations of 1 and 10 mg/ L. All three solutions (1, 10 and stock 100 mg/ L) 

were placed into a quartz glass cuvettes with an optical path length of 10 mm. The 
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samples UV-Visible data was collected on a Shimadzu UV-1800 spectrophotometer 

with a double beam configuration. The wavelength spectrum ranged from 300 - 800 

nm with a resolution of 1 nm. The collected data was processed with UVProbe 2.3.1 

software (Shimadzu, Kyoto, Japan). 

 

3.4 Sea urchin embryonal development test- sperm pretreatment  

Sea urchin species A. lixula, also known as the black sea urchin, had been 

collected in Pula, Croatia (Valkane bay, July 2016 ). Samples were transported to 

Rovinj (40 km from Pula) to the Center for Marine Research of the Ruđer Bošković 

Institute.  

Afterwards they were kept for several days in outdoor stone tanks with a natural 

sea water flow through system. In the morning the experiment was started, 5 L of 

fresh sea water was filtered through a 0.2 µm filter. Afterwards several sea urchins 

(A.lixula) were carefully collected (to avoid gametes being expelled due to stress) and 

put into smaller containers with fresh sea water and transported into the research 

facility.  

Gametes were collected as formerly explained in Quiniou et al. (1999), with minor 

modifications. 0.5 M KCl solution was prepared by adding 3.73 g KCl into 100 mL of 

distilled water. Afterwards the sea urchins were shaken for a few seconds to induce 

the release of gametes, if nothing happened, 1 mL of 0.5 M KCl solution was injected 

through the peri-oral membrane and the sea urchins were shaken again, and as a 

consequence gametes were released.  

Gametes were gathered from several individuals, with sperm being collected ‘dry’ 

with a pipette and afterwards placed in a PCR tube and held on ice (0 ⁰C).  

Eggs were carefully gathered into a small conical container with fresh sea water 

and left for a few minutes for settling to take place. Excess water from the container 

was removed. Subsequently the maturity of gametes was checked with an optical 

microscope. The criteria were: spherical eggs and mobile sperm. The used A. lixula 

were later released back to the sea at the site in which they were found (Valkane, 

Pula, Croatia).  
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Stock solution 1 was diluted (100 mg/ AgNP (synthesis has been explained in 

chapter 5.2.) tenfold, by diluting 1 mL of stock 1 (100 mg / L) into 9 mL of ultrapure 

water., giving stock 2, a silver nanoparticle solution of 10 mg / L. This process has 

been done for practicality reasons involving the next step.  

The following quantities were then added to polystyrene cups: 100 uL of stock 1 

(100 mg / L) to the “1000 µg / L” named cup, 50 µL of stock 1 into a “500 µg/ L” 

labeled cup, 100 µL of stock 2 (10 mg / L) within a “100 µg / L” tagged cup, 50 µL of 

stock 2 into the “50 µg / L” labeled cup, 10 µL of stock 2 to the “10 µg / L” named cup 

and 1 µL of stock 2 within a “1 µg / L” labeled cup. 100 µL of ultrapure water was 

added to the “control” labeled cup. 10 mL of filtered sea water was added to all cups 

giving a series of different concentrations within the cups. Afterwards to every silver 

nanoparticle solution of various concentration 100 µL of pure A. lixula sperm (held till 

now into PCR tubes on 0 ⁰C) was added. 

The solutions of A. lixula sperm and different concentrations of silver nanoparticle 

solutions were left at room temperature for 10 minutes. Then, 100 µL of the first 

mixture (1000 µg / L silver nanoparticle solution with 100 uL of pure A. lixula sperm) 

was put into six well plates. This step was repeated with the other mixtures (to avoid 

subjectivity, and confusion in the counting process the well plates with different silver 

nanoparticle concentrations were keyed). 6 parallels of 7 different silver nanoparticles 

concentration and 100 µL of pure A. lixula sperm (42 in total) were tested. 

Afterwards 10 mL of filtered sea water and 40 µL concentrated egg cells (due 

deposition) were added into all well plates. The well plates were gently stirred to 

encourage fertilization and left at room temperature for 2 h. After this period, the 

embryos had reached the morula stage. At this point, the capability of sperm treated 

with various concentrations of silver nanoparticles to fertilize the egg cells was 

determined. This process was followed by inverted microscopy, and 100 egg cells of 

every replicate were randomly selected and determined if fertilization had occurred. 

Fertilized eggs had 1 or more grooves due to cell division, while in unfertilized eggs 

such a structure was not found. 

After all data has been collected the embryos were held at 20oC for 72 h with 

natural day – night cycle with occasional gentle agitation of the well plates. After 72h 

the fertilized eggs had reached the pluteus or larvae stage. Subsequently 100 larvae 
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from 4 replicates (of every silver nanoparticle concentration) were randomly chosen 

and checked for abnormalities by microscope. The samples were separated in four 

major groups with the following criteria, and shown in Figure 2. 

The first group, also called control, had normally developed larvae with 4 fully 

developed extremities (front are shorter, so called “arms” and the rear are longer, 

called “legs”), gastrointestinal tract and characteristic cone shape. Members of the 

second group, or retarded larvae, were no more than half the size of the first group, 

or had undeveloped / deformed extremities (most common deformation found was a 

shorter extremity). The dead larvae or plutei were placed in the third group. Dead 

samples had started decaying or only the skeletal structure remained. The fourth 

group contained the undeveloped larvae. Unlike the second group (retarded larvae) 

the undeveloped larvae had completely fallen behind in the development process. 

Often no skeletal, gastrointestinal structure or extremities could be found since 

samples were still in the blastula or gastrula stage. Non-fertilized eggs were not 

counted. 
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Fig. 2. Criteria by Burić et al.( 2015), normal (A), retarded (B and C) and undeveloped 

A. lixula larvae (D)  
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4. Results 

4.1 AgNP characterisation 

The absorbance graph of the AgNP in ultrapure water stock solution is shown in 

Figure 3. On the x-axis the wavelength expressed in nanometers (nm), while on the 

y-axis the absorbance (expressed in absorbance units) of the stock solution is given. 

The green line shows the absorbance of the 100 mg/L AgNP stock solution, the blue 

line shows the absorbance of the same solution after 10x dilution (10 mg/L) and red 

line after 100x dilution (1 mg/L). This strong absorbance peak whose intensity varies 

linearly with concentration is assigned to the surface plasmon resonance (SPR), a 

collective resonant oscillation of surface electrons interacting with the 

electromagnetic field (light), of AgNP. The maximum absorbance is at 435 nm and 

this SPR wavelength indicates that the nanoparticles have a size of 60 nm (Gicheva 

and Yordanov, 2013). 

 

Figure 3. Absorbance spectra of as-synthesized silver nanoparticles (green line, 100 

mg/L; blue line, 10 mg/L; and red line, 1 mg/L AgNP) 
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4.2 AgNP effects on the sea urchins sperm fertilization proficiency  

The relationship between AgNP concentration and fertilization rates was 

determined based on the beginning of cell division in eggs, and is shown in Figure 4. 

For control samples where sperm had not been exposed to AgNP, i.e. denoted as 

0 µg/L AgNP in Figure 4, the fertilization rate was found to be approximately 90%. 

However as the concentration of AgNP to which the sperm were exposed was 

increased to 50 µg/L there was a rapid decrease of fertilization success to 67%. 

Further incremental increases of AgNP concentration showed a linear decrease in 

fertilization rate. At 500 µg/L the fertilization rate was found to be 46%, while for an 

AgNP concentration of 1000 µg/ L only 33% of eggs showed the beginning of cell 

division. 

 

 

Figure 4. Relationship between AgNP concentration for sperm pre-treatment and 

fertilization rate in A. lixula eggs. Error bars indicate the standard deviation.  
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4.3 Effects on the pluteus stage in embryos fertilized with AgNP treated sperm 

For those eggs which were successfully fertilized by AgNP-treated sperm, the 

embryonal development was tracked until the larvae reached the pluteus stage and 

the percentage of plutei which were determined to be normal, retarded, undeveloped 

and dead are shown in Figure 5. In the control group 95% of the larvae were found to 

be normally developed, while those sperm pre-treated with AgNP concentrations 

ranging from 1 to 100 µg/L showed a slight decrease of normal larvae to 88% and an 

increase of dead larvae to 7%. At the higher sperm pre-treatment concentrations of 

500 µg/L and 1000 µg/L AgNP the percentage of normally developed larvae 

decreased to 77% and 72% respectively, with a corresponding increase in the 

number of larvae which were dead or showed arrested or retarded development.  

 

 

Figure 5. Percentage of normal (NP), retarded (RP), undeveloped (UND) and dead 

(DEAD) A. lixula larvae at various AgNP sperm pre-treatment concentrations 
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5. Discussion 

Over the past number of years there is an increasing number of studies that 

have focused on determining the effects of metal nanoparticles on freshwater and 

brackish or marine organisms. In particular, many of these studies have investigated 

the impact of AgNP on a wide range of organisms and the effect of Ag+ ions which 

are released from AgNP surfaces as they undergo oxidative dissolution in the 

aqueous environment. It has been shown that AgNP may induce in sea urchin larvae 

various negative effects such as, for example, fertilization failure, delay in 

development, stress, skeletal and gastrointestinal deformation (Burić et al., 2015). 

While Ag+ ions are widely believed to be the primary cause of AgNP toxicity to 

orgamisms, published data on sea urchins seem to indicate that the nanoparticles 

themselves may be more detrimental to embryo development than Ag+ ions (Šiller et 

al., 2013; Burić et al., 2015). 

A.lixula was chosen for this experimental work since previous studies carried 

out on sea urchin larvae indicated that A. lixula maybe considered the most 

appropriate urchin species in terms of biomonitoring as it showed a higher sensitivity 

to silver nanoparticles than other Mediterranean urchin species, viz. P. lividus and S. 

granularis (Burić et al., 2015). For example, toxic effects from AgNP were noted for 

A. lixula at concentrations as low as 1 µg/L while embryos exposed to just 10 µg/ L of 

AgNP 30 min post-fertilization induced a decrease of normally developed larvae from 

77.7% to 47.7%, (using the criteria reported by Carballeira et al. (2012)), and 

retarded larvae increased from 14% to 37.3%.  Increasing the dose to 50 µg/L or 100 

µg/L showed further negative impacts with complete stoppage in embryo 

development at all times of exposure post-fertilization. In the same study P.lividus 

embryos were also exposed to various concentrations of AgNP (1, 5, 10, 25, 50, 

100 µg/L) at different developmental stages post-fertilization (30 min, 90 min, 6 h, 

24 h). For AgNP concentrations up to 10 µg / L the development was unaffected 

while a dose of 50 µg/L gave significantly higher percentages of retarded and 

undeveloped larvae compared to control values - exposure 30 min post-fertilization 

gave only 50.7% normally developed larvae and 41.3% retarded larvae after three 

days. 

However A. lixula larvae from AgNP pre-treated sperm (this work) or egg cells 

(N. Peruško, personal communication) showed less retardation and a lower 
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undeveloped larvae rate when compared to larvae treated with AgNP at various 

times post-fertilization (Burić et al., 2015). Further, in the present work, it has been 

shown that sperm`s ability to fertilize eggs was severely lowered only when they were 

pre-treated with AgNP concentrations exceeding 100 µg/L, with an essentially linear 

concentration-dependent decrease in fertilization success. 

Pre-treatment of A. lixula eggs with similar concentrations of AgNP was carried 

out in a comparable experiment to the present work (N. Perusko, personal 

communication) with the former showing both similarities and differences to the data 

reported herein. Specifically, A. lixula eggs treated with AgNP showed a greater 

sensitivity to AgNP than sperm when fertilization rates are taken into consideration.  

For example, the sperm pre-treatment, even with a ten-fold greater concentration of 

AgNP (500 µg/L), showed 10% higher fertilization success than for pre-treated eggs 

at an AgNP concentration of 50 µg/L. This may indicate that pre-treated sperm are 

more robust in terms of being able to achieve fertilization compared to pre-treated 

eggs which may be more susceptible to the harmful effects of AgNP. 

In broad terms, why pre-treated sperm show a decreased ability to 

successfully fertilize eggs may be related to several factors. One of these is that due 

to the sperm’s smaller size, therefore a higher sensitivity to AgNP may exist for a 

given pre-treatment concentration with respect to egg pre-treatment. Moreover sperm 

mobility plays a key factor in the fertilization process. AgNP could have detrimental 

effects in that regard as with decrease in sperm mobility the probability of successful 

fertilization also decreases. Furthermore sperm´s chemoreceptors may be damaged 

by AgNP or the Ag+ ions that are inevitably released by the nanoparticles. However 

more in depth research with tailored experiments to address these points need to be 

carried out to clarify this process. 

A second aspect which needs to be addressed is the Trojan horse mechanism 

of AgNP introduction into the egg with pre-treated sperm as the carrier. It has 

recently been reported that silver nanoparticles can be internalized into sperm cells 

(Yoisungnern et. al., 2015). It may be possible that a similar process may manifest in 

the egg cells. Due to the sheer size difference, less silver nanoparticles can be 

internalized into the sperm cell. Therefore when an AgNP pre-treated sperm cell 

fertilizes an untreated egg cell the nanoparticles get “diluted” in the sizable egg cell 

volume. On the other hand when an AgNP pre-treated egg cell, assuming that AgNP 
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have been internalized, is fertilized by an untreated sperm cell the dilution of AgNP 

load can`t occur. Accordingly, this may point to one of a number of mechanisms that  

may explain why detrimental results are found more for larvae derived from AgNP 

pre-treated egg cells. Thus, it is possible that internalized AgNP may play a 

significant role in sperm and egg cell toxicity, not only from a physical standpoint 

related to nanoparticles specific size and its ability to disrupt membranes and be 

internalized, but also from the chemical perspective as direct suppliers of Ag+ ions 

inside sperm and egg cells. 

With regards to embryonal development after fertilization, in both the non-pre-

treated sperm and egg control groups around 90% of the larvae were normal. 

Increasing the AgNP dose concentration to 50 µg/L showed a slight decrease of 

normal larvae to 88% and increase of dead larvae to 7% when sperm pre-treatment 

was carried out. This indicates that, up to such concentrations, no significant negative 

effects were apparent with similar normally developed larvae to the control 

experiments. At high concentrations of 500 µg/L AgNP, only 77% larvae were 

normal. However, in a parallel experiment (larvae from egg cell pre-treatment; N. 

Peruško, personal communication) approximately 10 µg/L AgNP (i.e. a 50-times 

lower concentration than for sperm pre-treatment) was sufficient to decrease the 

normal larvae percentage to 77% and increase the retarded larvae to 19%. Severely 

detrimental results were noted at a concentration of 500 µg/L where only 40% of 

larvae were normal, 55% undeveloped and 5% retarded. This clearly shows that 

sensitivity to AgNP is not uniform across different cell types. 
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6. Conclusion 

With the increasing range and volume of nanoparticles being produced every 

year, and their ability to eventually enter the environmental, investigations into the 

negative effects of nanopartilces on living organisms are of growing importance. In 

this work it has been shown that sperm cells have decreased fertilization success 

after they come in contact with silver nanoparticles in a concentration dependent 

manner. Further, normal larval development was also found to be affected, with an 

increasing percentage of those eggs that had been successfully fertilized showing 

growth retardation, arrested development or death. Based on these results, further 

research is required to uncover the exact mode of interaction of the nanoparticles 

with sperm, their possible internalization and how they impact on key pathways 

during embryonal developing of sea urchins. 
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Sažetak  

Primjena umjetno proizvedenih nanočestica raste svake godine u širokom rasponu 

područja kao što su: medicina, kozmetika, proizvodnja hardverskih dijelova, 

poljoprivreda, prehrambeni dodatci, itd. Na taj se način povećava i vjerojatnost  da će 

nanočestice završiti u različitim dijelovima okoliša, poput: slatkovodnih sustava, tla, 

estuarija ili morske vode. Danas se nanočestice srebra koriste kao: optički pojačivači, 

toplinski i električni vodiči, antibakterijski premazi, biosenzori itd. Upravo zbog toga, 

studije o njihovoj okolišnoj sudbini, uzrocima toksičnosti, bioakumulaciji i upijanju, od 

ključne su važnosti kako bi se spriječili negativni učinci na ljude i ostale organizme. U 

ovom radu ispitan je utjecaj srebrnih nanočestica na spermu morskog ježinca Arbacia 

lixula. Proizvedene su srebrne nanočestice (AgNP) određenog promjera (60 nm). 

Nakon toga, sperma je bila izložena različitim koncentracijama AgNP (od 1-1000 μg/ 

L), te se pratilo da li tretirana sperma može oploditi jajne stanice i koji je postotak larvi 

bio normalno razvijen, zaostao, nerazvijeni embrii ili mrtvi. Stopa smrtnosti znatno je 

smanjena na 67% sa 50 ug / L AgNP (90% kontrola). Daljnji porast koncentracije 

AgNP pokazuje linearno smanjenje stope oplodnje. U pogledu razvoja larvi, linearno 

smanjenje normalnih larvi primiječeno je kod koncentracije većoj od 50 μg/ L. Stopa 

oplodnje bila je niža u tretmanu sperme u odnosu na objavljeni podatci za jajne 

stanice izlozeni srebrnim nanočesticima. Međutim, broj normalno razvijenih larvi bio 

je viši kod predtretmana sperme s AgNP. Mogući razlozi jesu: ulazak AgNP u jajne 

stanice te moguće razrijeđenje tijekom oplodnje. Potrebna su daljnja istraživanja o 

ulasku AgNP u jajne stanice te njihovom utjecaju na  spermu ježinaca. 
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ABSTRACT 

As the use of  synthesized nanoparticles grows every year in a broad range of fields 

like: medicine, cosmetics, hardware parts manufacturing, agriculture, dietary 

supplements, etc. So does the possibility that such nanoparticles finish into various 

environmental media such as freshwater systems, soil, estuarine or marine waters. 

Recently, silver nanoparticles have been used as optical enhancers, thermal and 

electrical conductors, antibacterial coatings, biosensors, etc. Therefore studies about 

their environmental fate, toxicity patterns, bioaccumulation and uptake are of pivotal 

importance to prevent negative effects on humans and other keystone species. In 

this study, the impact of silver nanoparticles on the sperm of sea urchin species 

Arbacia lixula has been investigated. Silver nanoparticles (AgNP) of a certain 

diameter have been produced (60 nm). Subsequently A. lixula  sperm were exposed 

to various concentrations of AgNP (from 1-1000 µg/ L) and observed if treated A. 

lixula sperm was able to fertilize the egg and what percentage of the plutei were 

normal, retarded, undeveloped or dead. Fertilization rate was significantly lowered to 

67% at 50 µg/ L of AgNP (90 % control). Further increment of AgNP concentration 

shows a linear decrease in fertilization rates. In regards to larval development major 

effects and a linear reduction of normal larvae were identified at concentrations 

exceeding 50 µg/L. Fertilization rates were lower for sperm treatment than literature 

values for urchin eggs treated with silver nanoparticles. However normal larvae were 

more frequent after sperm treatment, and may be due to internalization of AgNP and 

a dilution effect when fertilization takes place. Further investigation of AgNP 

internalization and the effects this process is highly needed. 
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