Vibracijski i toplinski nadzor elektromotornih pogona

Luk, Mauro

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Pula / Sveučilište Jurja Dobrile u Puli**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:137:732932

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-28

Repository / Repozitorij:

Digital Repository Juraj Dobrila University of Pula

Sveučilište Jurja Dobrile u Puli

Tehnički fakultet u Puli

MAURO LUK

VIBRACIJSKI I TOPLINSKI NADZOR

ELEKTROMOTORNIH POGONA

Diplomski rad

Pula, studeni, 2023. godine

Sveučilište Jurja Dobrile u Puli

Tehnički fakultet u Puli

MAURO LUK

VIBRACIJSKI I TOPLINSKI NADZOR

ELEKTROMOTORNIH POGONA

Diplomski rad

JMBAG: 0069068234, redoviti student

Studijski smjer: Diplomski sveučilišni studij strojarstva

Predmet: Elektromotorni pogoni

Znanstveno područje: Tehničke znanosti

Znanstveno polje: Strojarstvo

Znanstvena grana: Opće strojarstvo

Mentor: Prof. dr. sc. Livio Šušnjić

Pula, studeni, 2023. godine

Prof. dr. sc. Livio Šušnjić (Ime i prezime nastavnika)

Elektromotorni pogoni (Kolegij)

Tehnički fakultet u Puli

Sveučilište Jurja Dobrile u Puli

TEHNIČKI FAKULTET U PULI

ZADATAK TEME DIPLOMSKOG RADA

Pristupniku Mauru Luku

MBS: 0069068234

Studentu Diplomskog sveučilišnog studija strojarstva Tehničkog fakulteta u Puli izdaje se zadatak za diplomski rad – tema diplomskog rada pod nazivom:

Vibracijski i toplinski nadzor elektromotornih pogona

Prikazati, analizirati i interpretirati rezultate periodičkog vibracijskog i termičkog nadzora elektromotornih pogona u postrojenjima Sv. Stjepan i Gradole koja su u okviru Istarskog vodovoda d.o.o. U radu opisati kavezni asinkroni motor, prikazati teorijsku podlogu vibracija, navesti uzroke vibracija, prikazati dopuštene vrijednosti vibracija u skladu sa standardima, opisati senzore vibracija i temperature. Osvrnuti se na moguća poboljšanja nadzora u navedenim postrojenjima.

Rad obraditi sukladno odredbama Pravilnika o diplomskom radu Sveučilišta u Puli.

Strojarstvo - redovni student

Datum: 06.03.2023.

Potpis nastavnika:

IZJAVA O AKADEMSKOJ ČESTITOSTI

Ja, dolje potpisani <u>Mauro Luk</u>, kandidat za <u>magistra inženjera strojarstva</u> ovime izjavljujem da je ovaj diplomski rad rezultat isključivo mojega vlastitog rada, da se temelji na mojim istraživanjima te da se oslanja na objavljenu literaturu kao što to pokazuju korištene bilješke i bibliografija. Izjavljujem da niti jedan dio diplomskog rada nije napisan na nedozvoljen način, odnosno da je prepisan iz kojega necitiranog rada, te da ikoji dio rada krši bilo čija autorska prava. Izjavljujem, također, da nijedan dio rada nije iskorišten za koji drugi rad pri bilo kojoj drugoj visokoškolskoj, znanstvenoj ili radnoj ustanovi.

Student

U Puli, 23. studenog 2023. godine

IZJAVA o korištenju autorskog djela

Ja, <u>Mauro Luk</u> dajem odobrenje Sveučilištu Jurja Dobrile u Puli, kao nositelju prava iskorištavanja, da moj diplomski rad pod nazivom:

"Vibracijski i toplinski nadzor elektromotornih pogona" koristi na način da gore navedeno autorsko djelo, kao cjeloviti tekst trajno objavi u javnoj internetskoj bazi Sveučilišne knjižnice Sveučilišta Jurja Dobrile u Puli te kopira u javnu internetsku bazu završnih radova Nacionalne i sveučilišne knjižnice (stavljanje na raspolaganje javnosti), sve u skladu s Zakonom o autorskom pravu i drugim srodnim pravima i dobrom akademskom praksom, a radi promicanja otvorenoga, slobodnoga pristupa znanstvenim informacijama.

Za korištenje autorskog djela na gore navedeni način ne potražujem naknadu.

U Puli, 23. studenog 2023.

Julitation

ZAHVALA

Veliko hvala prof. dr. sc. Liviu Šušnjiću na usmjeravanju, preporučenoj literaturi i vrlo korisnim savjetima pri izradi ovog rada, te vremenu koje je za to odvojio.

Zahvaljujem tvrtki Istarski vodovod d.o.o. Buzet, posebice mr. sc. Dorjanu Jermanišu dipl. ing. stroj. i ostalom osoblju odjela preventivnog održavanja na omogućavanju realizacije praktičnog djela rada i pomoći pri istoj.

Također, zahvaljujem tvrtki Kalmer d.o.o. Trbovlje posebice ing. stroj. Borutu Hodeju koji je proveo periodički vibracijski nadzor analiziran u praktičnom djelu ovog rada, te ukazao na važnosti pri provođenju istog.

Za kraj, beskrajno hvala mojim roditeljima koji su me bezuvjetno podržavali tijekom cijelog akademskog puta.

Sadržaj

SA	ŽETAK	. I
AB	STRACT	II
1.	UVOD	1
2.	KAVEZNI ASINKRONI MOTOR	4
	2.1 Konstruktivni elementi - presjek stroja	7
	2.2 Fizikalna slika rada 1	2
	2.3 Izvedbe asinkronog motora prema NEMA i IEC standardu 2	20
	2.3.1 Momentna karakteristika motora 2	20
	2.3.2 Temperaturni razredi izolacije 2	23
	2.3.3 Klasifikacija ostalih karakteristika kaveznog motora 2	<u>2</u> 4
	2.3.4 Očitavanje karakteristika s natpisnih pločica	29
3.	POKAZATELJI STANJA ISPRAVNOSTI KAVEZNOG MOTORA	31
	3.1 Vibracije	32
	3.1.1 Matematički model vibracija kompleksnog sustava	32
	3.1.2 Karakteristične pobude dinamičkog sustava kaveznog motora	38
	3.2 Toplina 4	19
	3.3 Električne veličine 5	50
4.	NADZOR ASINKRONOG ELEKTROMOTORNOG POGONA	51
	4.1 Vibracijski nadzor	52
	4.1.1 Senzori za mjerenje vibracija i instrumenti za obradu signala	57
	4.1.2 Vrste prikaza rezultata mjerenja6	33
	4.2 Toplinski nadzor6	6
	4.2.1 Nadzor topline s pomoću kontaktnih senzora temperature6	6

	4.2.2	Nadzor topline s pomoću termografije	70
5.	PERIO	DIČKI VIBRACIJSKI NADZOR CRPNIH STANICA	73
	5.1 Tel	hnički opis crpnih stanica	74
	5.1.1	Tehnički opis crpne stanice Sv. Stjepan	75
	5.1.2	Tehnički opis crpne stanice Gradole	77
	5.2 Prii	mijenjene vrste instrumenata i standarda	81
	5.3 Po	stupak provođenja nadzora	83
	5.4 Ana	aliza i interpretacija rezultata	90
	5.4.1	Analiza rezultata mjerenja vibracija CA 1 i CA 4 Sv. Stjepan	91
	5.4.2	Analiza rezultata mjerenja vibracija CA 2 Gradole	106
	5.4.3	Analiza rezultata mjerenja vibracija CA 3 Gradole	117
	5.4.4	Analiza rezultata mjerenja vibracija CA 7 Gradole	120
	5.4.5	Pregled stanja ispravnosti elektromotornih pogona i preporučenih akt održavanja	tivnosti 124
6.	ZAKLJ	UČAK	126
Lite	eratura		127
Po	pis slika		130
Po	pis tablic	ca	135
Po	pis ozna	ıka	137
Po	pis kratio	са	148
PF	ILOZI		150
	Dodata	k A: Preporučeni dosjedi ležaja s kućištem i vratilom	150

SAŽETAK

Kroz ovaj rad analizirana je implementacija vibracijskog i toplinskog nadzora elektromotornih pogona. Najprije je predstavljena fizikalna slika trofaznog kaveznog motora uz NEMA i IEC standardizaciju operativnih parametara. Nakon toga su razmatrani matematički modeli vibracija i topline kao fizikalnih pokazatelja stanja ispravnosti kaveznog motora, te pogonskog sustava kao cjeline. Definirane su frekvencije dinamičkih sila pobude uzrokovanih neispravnostima karakteristične za elektromotorni pogon centrifugalne crpke, te metodologija i instrumentarij provođenja periodičkog vibracijskog nadzora u sklopu strategije održavanja po stanju. Uz to, dan je pregled kontinuiranog toplinskog nadzora elektromotornog pogona lokalnim mjerenjem temperature kontaktnim temperaturnim senzorima, te periodičkog toplinskog nadzora globalnim mjerenjem temperature termografijom na razini sustava. Konačno je u zadnjem dijelu rada prikazana praktična primjena periodičkog vibracijskog nadzora na primjeru pet srednjih i velikih elektromotornih pogona centrifugalnih crpki vodoopskrbnih crpnih stanica. Također, dan je primjer aktiviranja zaštite od pregrijavanja lokalnih dijelova kaveznog motora izvedene posredstvom kontinuiranog toplinskog nadzora i doprinos istog evaluaciji stanja ispravnosti elektromotornog pogona. Analizom rezultata mjerenja vibracija uslijed periodičkog vibracijskog nadzora provedenog na pet elektromotornih pogona različitih stanja ispravnosti prepoznate su vibracije karakteristične za neispravnosti opisane kroz teorijski dio rada, te njihov stadij razvoja. Na temelju dobivenih saznanja razmotrene su daljnje aktivnosti održavanja, te je dan konačan osvrt na zaključke.

Ključne riječi: kavezni motor, održavanje po stanju, vibracije, toplina, nadzor

ABSTRACT

Through this paper, vibration and thermal condition monitoring of the electric drives implementation is analyzed. In the first part of the paper, the physical working principle of a three - phase squirrel cage motor along with NEMA/IEC operating standards are presented first. After that, general mathematical models of forced vibrations and heat, physical parameters that indicate the condition of the squirrel cage motor, and the drive as a whole are given. Frequencies of forcing functions induced by various faults specific to the centrifugal pump electric drive are defined, as well as the methodology and instruments necessary for conducting periodic vibration monitoring as a part of the condition-based maintenance strategy. Along with that, a review of continuous thermal condition monitoring by localized temperature measurement using contact temperature sensors and periodic thermal condition monitoring by global temperature measurement using thermography is given. In the second part of the paper, hands - on implementation of periodic vibration monitoring on five medium and high - power centrifugal pump electric drives of the two water supply network's pump stations is introduced. Also, an example of overheating protection activation enabled by continuous thermal monitoring and its contribution to the evaluation of electric drive's condition has been presented. Through the analysis of the vibration measurement results derived from periodic vibration monitoring of five centrifugal pump electric drives in various conditions, vibrations characteristic of certain faults introduced in the theoretical part of the paper have been recognized along with the state of the fault's development. Further maintenance actions are considered based on the evaluated condition of the drives, and the final review of conclusions is given.

Key words: squirrel cage motor, condition - based maintenance, vibration, heat, monitoring

1. UVOD

Unutar ovog rada bit će analizirana metodologija nadzora stanja asinkronog elektromotornog pogona, dok će se smislenost njezine implementacije potvrditi kroz praktični dio rada. Naglasak je stavljen na sljedeće vrste nadzora stanja pogona: vibracijski nadzor i toplinski nadzor u cilju kompromisa između dostatne detaljnosti rada, te sužavanja fokusa vrlo opsežne tematike.

Elektromotorni pogoni elektromehanički su sustavi namijenjeni pokretanju radnih mehanizama i upravljanju njihovim mehaničkim gibanjem. Sastavni dijelovi elektromotornog pogona su: elektromotor, radni mehanizam, prijenosnici, te dodatno u slučaju upravljivog pogona: upravljački uređaj i pretvarački uređaj. [1] Elektromotori su pokretači širokog spektra uređaja i pogona čiju primjenu možemo vidjeti na svakom koraku: vozila, strojevi u industrijskim postrojenjima, klimatizacijski uređaji, kućanski aparati, sustavi za hlađenje električnih uređaja i mnogi drugi. Nije nepoznanica da su odgovorni za potrošnju preko 50 % iznosa ukupne električne energije. [2]

Primjena elektromotora doživjela je izraziti rast u periodu od 2011. godine do 2021. godine čemu svjedoči činjenica da je vrijednost svjetskog tržišta elektromotora porasla s 16 100 000 000 \$ u 2011. godini na čak 150 500 000 000 \$ u 2021. godini. Procjenjuje se da će vrijednost tržišta u 2030. godini biti oko 232 500 000 000 \$. Najutjecajnije razloge izrazitog rasta tržišta analitičari vide u industriji električnih vozila, transporta, vuče, plovila, sustava grijanja ventilacije i klimatizacije, ali i u činjenici jakog intenziteta industrijalizacije u jugoistočnoj Aziji. Napominju i činjenicu da se brojni korisnici iz različitih industrija u cilju sve aktualnije uštede električne energije odlučuju zamijeniti starije elektromotore s novijima koje odlikuje veći stupanj korisnosti. [2] [3]

Važnost pouzdanosti i raspoloživosti elektromotora posebice dolazi do izražaja pri primjeni u industrijskim postrojenjima i postrojenjima civilne infrastrukture. Za te se primjene elektromotorni pogoni s kaveznim rotorom najčešće koriste najviše zbog svoje jednostavne konstrukcijske izvedbe, mogućnosti regulacije brzine vrtnje i manje zahtjevnog održavanja u odnosu na ostale izvedbe elektromotornih pogona. [4]

Okretno magnetsko polje kao temelj principa rada asinkronog i sinkronog motora, prvi je otkrio i predstavio hrvatski znanstvenik Nikola Tesla 1887. g. kroz svoj patent dvofaznog asinkronog elektromotora i time dao nemjerljiv doprinos razvoju modernih asinkronih motora, te sinkronih motora i generatora. [5]

Velika važnost pouzdanosti asinkronih kaveznih motora može se razmatrati u ekonomskom smislu ako se razmatra zastoj ključnog proizvodnog procesa u nekoj industriji, ali i u smislu prekida ili ometanja isporuke ključnih usluga civilne infrastrukture poput prijevoza ili opskrbe vodom. Zbog opisanih zahtjeva kontinuirane pouzdanosti i raspoloživosti asinkronih elektromotornih pogona, metoda preventivnog održavanja na temelju vremenskog slijeda se nije pokazala kao adekvatna strategija za ispunjavanje navedenih zahtjeva zbog izostanka kvantitativnog uvida u stanje ispravnosti. Njezina implementacija uz to što ne osigurava maksimalno mogući kontinuitet rada pogona, značajno poskupljuje troškove održavanja. [6]

Rješenje koje zadovoljava te zahtjeve sadržano je u nadzoru elektromotornih pogona u sklopu strategije održavanja po stanju. Strategija održavanja po stanju temelji se na primjeni dijagnostičkih metoda za nadzor različitih fizikalnih veličina, te ujedno i pokazatelja stanja opreme u stanju eksploatacije. Tako se omogućuje rano otklanjanje nepravilnosti, izbjegavanje nepotrebnih zastoja i uvid u stanje ispravnosti opreme izraženo kvantitativnim fizikalnim veličinama. [7]

Nadzorom elektromotornog pogona u sklopu strategije održavanja po stanju, moguće je produžiti radni vijek pogona uz optimizaciju troškova održavanja i zastoja postrojenja, te uz navedeno povećati sigurnost radne okoline. Za provođenje uspješnog nadzora ključno je da se rezultati stanja dobiju pravovremeno, te sukladno tome treba prilagoditi frekvenciju periodičkog nadzora u zavisnosti o važnosti i režimu rada elektromotornog pogona. Kod izrazito važnih i skupih pogona u intenzivnom režimu rada može se razmotriti i uvođenje kontinuiranog nadzora. [6] Evaluacija metodologije u praksi bit će provedena na primjeru asinkronih elektromotornih pogona crpnih stanica Sv. Stjepan i Gradole nedaleko Grada Buzeta kao postrojenja koja pružaju ključnu uslugu vodoopskrbe. Važnost pouzdanosti navedenih postrojenja dodatno je naglašena činjenicom da u ljetnim mjesecima opskrbljuju vodom neke od ključnih turističkih destinacija na području zapadne obale Istarske županije. Kroz praktičnu primjenu periodičkog vibracijskog nadzora na navedenim crpnim stanicama dobit će se uvid u dostatnost periodičke varijante vibracijskog nadzora za postavljanje dovoljno pouzdane dijagnostičke slike elektromotornih pogona crpnih stanica. Također, razmotrit će se doprinos primjene kontinuiranog toplinskog nadzora poboljšanju dijagnostičke slike elektromotornog pogona dobivene periodičkim vibracijskim nadzorom.

Prije detaljnijeg ulaska u tematiku vibracijskog i toplinskog nadzora asinkronih elektromotornih pogona, u drugom je poglavlju analiziran trofazni asinkroni kavezni motor uz objašnjenje fizikalne slike principa rada. Nastavak drugog poglavlja predstavlja i pojašnjava klasifikaciju izvedbi kaveznih motora s obzirom na momentnu karakteristiku, toplinsku izolaciju, te ostale karakteristike.

Treće poglavlje kroz pregled uobičajenih kvarova kaveznih asinkronih motora i predstavljanje dva fizikalna pokazatelja stanja ispravnosti motora: vibracija i topline, te njihovih fizikalnih slika daje uvod u vibracijski i toplinski nadzor asinkronih elektromotornih pogona.

Četvrto poglavlje analizira metodologije dvije navedene vrste nadzora asinkronog elektromotornog pogona. U istom se poglavlju opisuje instrumentarij za provođenje vrsta nadzora, te se razmatraju preporuke i standardi za interpretaciju rezultata nadzora.

Peto poglavlje bavi se praktičnim dijelom rada, odnosno nadzorom i za to predviđenim mjerenjima. Uvodni dio ovog poglavlja sadrži tehnički opis elektromotornih pogona. Dijelovi nakon toga sadrže opis mjerne opreme, te referentne standarde. Postupak provođenja periodičkog vibracijskog nadzora elektromotornih pogona crpnih stanica prikazan je potpoglavljem 5.2. Analiza i interpretacija rezultata dana je potpoglavljem 5.3. Cjelokupan osvrt na rad dan je zaključnim šestim poglavljem.

2. KAVEZNI ASINKRONI MOTOR

Asinkroni ili indukcijski motori podvrsta su elektromotora napajanih s izmjeničnim naponom koje karakterizira fizikalna slika rada temeljena na indukciji napona rotora što čini temeljnu razliku u odnosu na sinkrone motore. Upravo navedena karakteristika dovodi do zahtjeva za različitom mehaničkom brzinom vrtnje rotora u odnosu na brzinu vrtnje statorskog magnetskog polja, zbog čega su i dobili naziv asinkroni odnosno neistovremeni. Princip stvaranja okretnog magnetskog polja statorske strane isti je za sinkrone i asinkrone motore. [5]

Karakteristika neistovremenosti po kojoj je asinkroni motor nazvan objašnjena je fizikalnim slijedom njegovog pokretanja uvodnim dijelom ovog poglavlja [5][8]: Pri protjecanju trofazne izmjenične struje mrežnog napajanja kroz statorske namotaje uslijed vremenskog pomaka faza struja i prostornog pomaka namota u identičnim iznosima od $2\pi/3$ stvara se okretno magnetsko polje statora eliptičnog oblika kao posljedica superpozicije magnetskih polja susjednih namotaja. Okretno magnetsko polje vrti se sinkronom brzinom vrtnje iskazanom preko broja okretaja n_s , min⁻¹ kao što je to prikazano izrazom (2.1):

$$n_{\rm s} = \frac{60 \cdot f_{\rm s}}{\rho} \tag{2.1}$$

Pri čemu je

*f*_s - frekvencija izmjeničnih struja statora, Hz

p - broj pari polova

Silnice magnetskog polja statora eliptičnog oblika presijecaju vodiče rotora kao što je to prikazano *Slikom 2.1* [8].

Slika 2.1 Silnice magnetskog polja na presjeku četveropolnog asinkronog motora

Presijecanje vodiča rotorskog namotaja silnicama okretnog magnetskog polja dovodi do indukcije napona u istima, te posljedično i struje izmjenične frekvencije jednake frekvenciji klizanja f_r , Hz koja je dana izrazom (2.2):

$$f_{\rm r} = s \cdot f_{\rm s} \tag{2.2}$$

Pri čemu je:

s - Parametar klizanja

*f*_s - Frekvencija izmjeničnih struja statora, Hz

Parametar klizanja *s* definiran je omjerom brzine klizanja to jest relativne brzine okretnog magnetskog polja u zračnom rasporu naprema mehaničkoj vrtnji rotora iskazane preko razlike broja okretaja u minuti: $n_s - n$, min⁻¹ i sinkrone brzine vrtnje okretnog magnetskog polja iskazane preko broja okretaja u minuti n_s , min⁻¹. Opisani omjer prikazan je izrazom (2.3):

$$s = \frac{n_{\rm s} - n}{n_{\rm s}} \tag{2.3}$$

Pri čemu je:

 $n_{\rm s}$ - Broj okretaja okretnog magnetskog polja statora u minuti, min⁻¹

n - Broj okretaja rotora u minuti pri mehaničkoj brzini vrtnje, min⁻¹

Parametar klizanja *s* iskazuje se u postocima, te uobičajeno poprima vrijednosti između 0.1% i 5% u ustaljenom režimu rada. Zbog utjecaja na povećanje gubitaka energije, iznosi prema gornjoj granici uobičajeni su za asinkrone motore snaga do 1 kW. Pri tranzijentnom stanju pokretanja do postizanja radne brzine, klizanje poprima vrijednosti od 100% pa do konačnog iznosa u navedenom intervalu ustaljenog režima.

Inducirana izmjenična struja rotora dovodi do stvaranja vlastitog okretnog magnetskog polja rotora čija je relativna brzina vrtnje u odnosu na rotor iskazana brojem okretaja u minuti n_r , min⁻¹određena frekvencijom klizanja f_r , Hz kao što je to prikazano izrazom (2.4):

$$n_{\rm r} = \frac{60 \cdot f_{\rm r}}{\rho} \tag{2.4}$$

Interakcijom struja u rotoru i okretnog magnetskog polja dolazi do stvaranja sila koje djeluju na vodiče rotora i zakreću ga u smjeru okretanja magnetskog polja mehaničkom brzinom vrtnje koja nikad ne doseže brzinu okretnog magnetskog polja statora. Detaljnija fizikalna slika prethodno opisanih interakcija predstavljena je u potpoglavlju 2.2.

Kako bi se elektromehanička pretvorba energije odvijala kontinuirano nužno je da se magnetska polja statora i rotora okreću istom brzinom, što je ispunjeno uvjetom danim preko izraza (2.5):

$$n + n_{\rm r} = n_{\rm s} \tag{2.5}$$

Uvrštavanjem preoblikovanih izraza (2.2) i (2.3) u izraz (2.5) dobivamo izraz (2.6):

$$n_{\rm s} \cdot (1 - s) + s \cdot n_{\rm s} = n_{\rm s}$$
 (2.6)

[5][8]

2.1 Konstruktivni elementi - presjek stroja

Dodatna podjela asinkronih motora može se provesti prema izvedbi rotora na: [5]

- Asinkrone motore s kaveznim rotorom
- Asinkrone motore s kliznokolutnim (namotanim) rotorom
- Asinkrone motore s masivnim rotorom

Izvedba s kliznokolutnim rotorom uz statorski namot zahtjeva spajanje i rotorskog namota na mrežu, a uz to ima i veći broj konstruktivnih elemenata u odnosu na izvedbu s kaveznim rotorom. Kao što je već navedeno u uvodnom poglavlju ovog rada, jednostavnost konstrukcijske izvedbe kaveznog motora uz sve prednosti koje to donosi najzaslužniji su za učestalost primjene asinkronih motora s kaveznim rotorom. Prednosti izvedbe s kliznokolutnim rotorom svakako je manja struja pri pokretanju, dok potreba za varijacijama izvedba kaveznog rotora poput rotora s dvostrukim kavezom ili visokim štapovima dolazi do izražaja u slučajevima gdje se zahtijevaju specifične momentne karakteristike motora pri pokretanju. [9]

Presjek uobičajenog asinkronog kaveznog motora s označenim konstruktivnim elementima prikazan je *Slikom 2.2.* [5]

Slika 2.2 Presjek asinkronog kaveznog motora

Statorska strana motora sastoji se od izoliranih trofaznih namotaja bakrenih vodiča uloženih u utore statorskog paketa. Poprečni presjek utora statorskog paketa visokonaponskog asinkronog motora s uloženim izoliranim namotajima prikazan je *Slikom 2.3.* [6]

Slika 2.3 Utor statorskog paketa s uloženim izoliranim namotima

Pri čemu su oznake sa Slike 2.3: [6]

- 1 Utorska izolacija namota prema masi
- 2 Među-zavojna (uzdužna) izolacija namota
- 3 Bakreni vodič namota
- 4 Izolacijski uložak između gornjeg i donjeg sloja namota
- 5 Polu-vodljivi zaštitni sloj od parcijalnih izbijanja
- 6 Utorski klin
- 7 Ugrađeni temperaturni senzori (Pt-100 sonde)
- 8 Dinamo-lim statorskog paketa

Statorski paket izrađen je iz međusobno izoliranih dinamo-limova u obliku cilindra s provrtom, ovakvom izvedbom minimiziraju se gubici uslijed vrtložnih struja. Dinamolimovi su magnetski limovi izrađeni iz niskolegiranog čelika s udjelom silicija. Izrađuju se najprije toplim valjanjem, zatim se hladno valjaju na konačnu debljinu od 0,5 mm. Karakteriziraju ih izotropna mehanička i magnetska svojstva, te relativno visoka polarizacija magnetskog zasićenja. Jednaka magnetska svojstva u svima smjerovima omogućavaju magnetsku interakciju nužnu za ostvarenje fizikalne slike rada asinkronog motora. [6]

Rotorska strana motora sastoji se od rotorskih štapova izrađenih iz bronce, bakra ili aluminijske legure uloženih bez izolacije u rotorski paket izrađen iz dinamo-limova u obliku cilindra s utorima za smještaj namota. Štapovi uloženi u utore, te kratkospojeni prstenom čine rotorski namot. Rotorski namot kaveznog motora prikazan je *Slikom 2.4.* [9]

Slika 2.4 Rotorski namot kaveznog motora

Na Slici 2.4 redom su označeni sljedeći dijelovi rotorskog namota: [9]

- 1 Vodiči u obliku štapova
- 2 Kratkospojni prsten
- 3 Rotorski paket izrađen iz dinamo-limova

Vratilo izvedeno kroz rotor ključno je za prijenos mehaničke snage dobivene vrtnjom rotora neposredno ili posredno na radni stroj, ali i na ventilator unutar motorskog sklopa koji je spojen na njega.

Kućište osim što pruža mehaničku zaštitu motorskom sklopu konstrukcijskom izvedbom otvora omogućuje odgovarajuće radijalno i aksijalno prisilno strujanje zraka ostvareno ventilatorom. Tako se motor hladi prijelazom topline konvekcijom s konstruktivnih elemenata stroja na strujeći zrak. Orebrenjem kućišta povećava se ukupna rashladna površina i pospješuje prijenos topline na okolinu. [9] Izvedba hlađenja s prisilnim strujanjem zraka uzrokovanim ventilatorom na vratilu najčešća je, ali postoje i kompleksnije izvedbe rashladnih sustava od kojih će neke biti spomenute kasnije u klasifikaciji.

Trofazni priključci spajaju se iz izvora na priključnu kutiju, te zatim napajaju statorske namotaje po obrascu određenom izvedbom priključne kutije s obzirom na odabrani način pokretanja koji može biti:

- Pokretanje direktnim spajanjem na izvor

Najjednostavniji način pokretanja, koji se odabire za primjene koje ne zahtijevaju pokretanje pri velikom opterećenju. Pri većim opterećenjima uslijed pokretanja problem nastaje zbog velikog iznosa struja u statorskim namotima.

- Pokretanje zvijezda trokut spojem

Pri pokretanju namoti statora spojeni su u zvijezda spoj, te uslijed postizanja radnog stanja prelaze u trokut spoj. Time se postiže tri puta manji iznos struje u namotima statora pri pokretanju, ali je i okretni moment pri pokretanju tri puta manji. Slijedom navedenog ovaj način pokretanja prikladan je za motore pogona kojima je potezni moment pri pokretanju znatno manji od nominalnog momenta.

- Pokretanje autotransformatorom

Regulacija struja u namotima statora vrši se regulacijom napona namota s pomoću autotransformatora koji se nalazi između priključne kutije motora i mrežnog izvora.

- Pokretanje soft-start uređajem

Pokretanje posredstvom *"soft-start"* uređaja koji regulacijom napona namota statora regulira i struje zaleta u njima. Za razliku od prethodno navedenih načina pokretanja, na taj se način postiže takozvani mekani zalet. [5][9]

2.2 Fizikalna slika rada

Prethodno izvođenju vektorskih jednadžbi asinkronog motora, potrebno je definirati osnovne zakonitosti na kojima se te jednadžbe temelje. Po Faradayevom općem zakonu indukcije u zatvorenoj se petlji koja obuhvaća magnetski tok ϕ , Wb inducira električni napon *e*, V iznosa jednakom brzini promjene magnetskog toka, te smjera koji rezultira strujama suprotnim promjeni magnetskog toka (2.7):

$$e = -\frac{d\phi}{dt}$$
(2.7)

Ako opisana petlja *N* puta obuhvaća isti magnetski tok ili tok *N* puta kroz nju prolazi radi se o ulančanom magnetskom toku Ψ , Wb koji je općenito definiran izrazom (2.8):

$$\Psi = \int_{S} \vec{B} \, \mathrm{d}\vec{S} \tag{2.8}$$

Pri čemu je:

 \vec{B} - Vektor magnetske indukcije, to jest gustoće silnica magnetskog toka, T

 \vec{S} - Vektor površine plohe omeđene promatranom petljom, m²

Iz izraza (2.7) i (2.8) slijedi da za namot s više petlji vrijedi izraz (2.9):

$$e = -\frac{d\Psi}{dt}$$
(2.9)

Iz izraza (2.9) očito je da u cilju indukcije napona postoji potreba za promjenom ulančanog magnetskog toka kroz vrijeme. Inducirani napon ostvaruje se na dva načina:

- Zavoj miruje, a ulančen je s promjenjivim magnetskim tokom u vremenu
- Zavoj se giba, a ulančen je s konstantnim magnetskim tokom u vremenu

S obzirom na navedeno ukupno inducirani napon *e*, V definiran izrazom (2.9) možemo prikazati kao zbroj napona transformacije e_t , V i napona rotacije e_r , V po izrazu (2.10):

$$e = e_{\rm t} + e_{\rm r} \tag{2.10}$$

$$e = -\frac{\partial \Psi}{\partial t} - \omega \cdot \frac{\partial \Psi}{\partial \alpha}$$

Ukupni ulančeni magnetski tok *i* - tog namota Ψ_i , Wb možemo prikazati tenzorskom notacijom preko izraza (2.11):

$$\Psi_{i} = L_{i} \cdot i_{i} + L_{ij} \cdot i_{j} \qquad (2.11)$$

Pri čemu je:

- Li Samoinduktivitet namota, H
- L_{ii} Međuinduktivitet namota s ostalim namotima, H

*i*_i - Vlastita struja uzbude, A

*i*_i - Struja uzbude ostalih namota, A [9][10]

Shematski prikaz kaveznog namota prikazan je *Slikom 2.5*, dok je međusobni položaj osi faznih namota statora i petlji rotorskog kaveza prikazan *Slikom 2.6*. [11]

Tehnički fakultet Sveučilišta Jurja Dobrile u Puli

Slika 2.6 Međusobni položaj osi faznih namota statora i petlji rotorskog kaveza Pri čemu je:

Q_r - Broj rotorskih petlji

 i_{μ} - Struja rotorske petlje μ = 1...Q_r-1, A

 $i_{\mu \check{s}t}$ - Struja rotorskog štapa $\mu = 1...Q_r$ -1, A

 $L_{\sigma \check{s}t}$ - Rasipni induktivitet štapa, H

 $L_{\sigma pr}$ - Rasipni induktivitet kratkospojnog prstena, H

 $\alpha_r = \frac{2 \cdot \pi}{Q_r}$ - Geometrijski kut između osi dviju susjednih petlji rotorskog kaveza, rad

p - Broj pari polova

 $\vartheta = p \cdot \vartheta_m$, rad - Električni kut zakreta rotora određen brojem pari polova i kutom mehaničkog zakreta rotora ϑ_m , rad. U jednom mehaničkom zakretu od 2π rad motor s dva para polova napravit će 4π rad električnog zakreta, što će rezultirati dvostruko manjom brzinom vrtnje i dvostruko većim momentom.

Ukupni ulančani magnetski tok μ - te rotorske petlje Ψ_{μ} , Wb kaveznog rotora definiran je izrazom (2.12) s obzirom na *Sliku 2.5* i izraz (2.11):

$$\Psi_{\mu} = (L_{\rm rr} + 2 \cdot L_{\sigma \rm pr}) \cdot i_{\mu} - L_{\sigma \rm \tilde{s}t} \cdot i_{\mu-1} - L_{\sigma \rm \tilde{s}t} \cdot i_{\mu-2} + L_{\mu \rm as} \cdot i_{\rm as} + L_{\mu \rm bs} \cdot i_{\rm bs} + L_{\mu \rm cs} \cdot i_{\rm cs} \quad (2.12)$$

Matrični vektor struja trofaznog statorskog namota { i_s } dan je izrazom (2.13):

$$\{i_{s}\} = [i_{as} \ i_{bs} \ i_{cs}]$$
 (2.13)

Komponente vektora struja trofaznog statorskog namota definirane su izrazima (2.14), (2.15) i (2.16):

$$i_{as} = \sqrt{2} \cdot I_{as} \cdot \cos(\omega_s \cdot t)$$
 (2.14)

$$i_{\rm bs} = \sqrt{2} \cdot I_{\rm bs} \cdot \cos\left(\omega_{\rm s} \cdot t - \frac{2\pi}{3}\right) \tag{2.15}$$

$$i_{\rm cs} = \sqrt{2} \cdot I_{\rm bs} \cdot \cos\left(\omega_{\rm s} \cdot t - \frac{4\pi}{3}\right) \tag{2.16}$$

Vektor struja prstena rotorskog kaveza { i_r } veličine Q_r prikazan je izrazom (2.17):

$$\{i_{\rm r}\} = [i_1 \ \dots \ i_{{\rm Q}_{\rm r}}]^{\rm T}$$
 (2.17)

Matrica međuinduktiviteta rotorski kavez - statorski namot [L_{rs}] dimenzija $Q_r \times 3$ definirana je izrazom (2.18):

$$[L_{\rm rs}] = \begin{bmatrix} L_{\rm 1as} & L_{\rm 1bs} & L_{\rm 1cs} \\ \vdots & \vdots & \vdots \\ L_{\rm Q_ras} & L_{\rm Q_rbs} & L_{\rm Q_rcs} \end{bmatrix}$$
(2.18)

Elementi prvog stupca matrice [L_{rs}]: $L_{\mu as}$, H za $\mu = 1...Q_r$ definirani su izrazom (2.19):

$$L_{\mu as} = I_{rs} \cdot \cos \left(\vartheta + (\mu - 1) \cdot p \cdot \alpha_{r}\right)$$
(2.19)

Elementi drugog stupca matrice [L_{rs}]: $L_{\mu bs}$, H za $\mu = 1...Q_r$ definirani su izrazom (2.20):

Tehnički fakultet Sveučilišta Jurja Dobrile u Puli

$$L_{\mu bs} = I_{rs} \cdot \cos\left(\vartheta + (\mu - 1) \cdot p \cdot \alpha_r - \frac{2\pi}{3}\right)$$
(2.20)

Elementi trećeg stupca matrice $[L_{rs}]$: $L_{\mu cs}$, H za $\mu = 1...Q_r$ definirani su izrazom (2.21):

$$L_{\mu cs} = I_{rs} \cdot \cos\left(\vartheta + (\mu - 1) \cdot p \cdot \alpha_{r} + \frac{2\pi}{3}\right)$$
(2.21)

Međuinduktivitet rotorske petlje i faze statora u trenutku kad im se osi preklapaju I_{rs} , H određen je izrazom (2.22):

$$I_{\rm rs} = \frac{2}{\pi} \cdot \frac{\mu_0}{\delta} \cdot \frac{d \cdot I_{\rm e}}{\rho^2} \cdot N_{\rm s} \cdot k_{\rm ws} \cdot \sin\left(\frac{\pi \cdot \alpha_{\rm r}}{2}\right)$$
(2.22)

Pri čemu su novo uvedene veličine:

- $\mu_0 = 4 \cdot \pi \cdot 10^{-7}$ H/m Magnetska permeabilnost vakuuma
- d Srednji promjer stroja na zračnom rasporu, mm
- *I*e Ekvivalentna duljina stroja, mm
- $N_{\rm s} \cdot k_{\rm ws}$ Efektivni broj zavoja statorskog namota
- δ Zračni raspor između statora i rotora, mm

Trodijagonalna matrica induktiviteta kaveznog namota $[L_r]$ definirana je izrazom (2.23):

$$[L_{\rm r}] = \begin{bmatrix} L_{\rm D} & -L_{\sigma {\rm \check{s}t}} & 0 & \cdots & 0 & -L_{\sigma {\rm \check{s}t}} \\ -L_{\sigma {\rm \check{s}t}} & L_{\rm D} & -L_{\sigma {\rm \check{s}t}} & 0 & \cdots & 0 \\ 0 & -L_{\sigma {\rm \check{s}t}} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -L_{\sigma {\rm \check{s}t}} & 0 \\ 0 & \cdots & 0 & -L_{\sigma {\rm \check{s}t}} & L_{\rm D} & -L_{\sigma {\rm \check{s}t}} \\ -L_{\sigma {\rm \check{s}t}} & 0 & \cdots & 0 & -L_{\sigma {\rm \check{s}t}} & L_{\rm D} \end{bmatrix}$$
(2.23)

Elementi glavne dijagonale matrice induktiviteta kaveznog namota L_D , H određeni su izrazom (2.24):

Tehnički fakultet Sveučilišta Jurja Dobrile u Puli

$$L_{\rm D} = L_{\rm rr} + 2 \cdot (L_{\rm \sigma pr} + L_{\rm \sigma št}) \tag{2.24}$$

Glavni induktivitet rotorske petlje L_{rr} , H poprima vrijednost po izrazu (2.25) zavisno o već poznatim veličinama:

$$L_{\rm rr} = \mu_0 \cdot \frac{d \cdot \pi \cdot l_{\rm e}}{Q_{\rm r} \cdot \delta}$$
(2.25)

Konačno je moguće definirati matrični vektor ukupnog ulančanog toka rotora { Ψ_r } izrazom (2.26) sukladno izrazu za ulančani tok μ - te petlje rotora (2.12) i izrazima (2.13)-(2.25):

$$\{\Psi_{\rm r}\} = [L_{\rm r}] \cdot \{i_{\rm r}\} + [L_{\rm rs}] \cdot \{i_{\rm s}\}$$
(2.26)

Matrični vektor elektromagnetskog momenta { M_e } moguće je izraziti vektorskim umnoškom po izrazu (2.27):

$$\{ M_{\rm e} \} = \frac{3}{2} \cdot p \cdot \{ i_{\rm r} \} \times \{ \Psi_{\rm r} \}$$
 (2.27)

[11]

Iz prethodnih izraza vidljiva je zavisnost matričnog vektora elektromagnetskog momenta o vektorskom produktu matričnog vektora struja rotora i matričnog vektora ukupno ulančanog toka rotora.

Na *Slici 2.7a* [10] prikazan je prostorni vektor jakosti magnetskog polja trofaznog statora: \vec{H} , A/m, dok su na *Slici 2.7b* prikazane odgovarajuće fazne struje u vremenskoj domeni.

Slika 2.7 Rezultantni vektor jakosti magnetskog polja u zračnom rasporu

Rezultantni prostorni vektor jakosti magnetskog polja dobiva se vektorskom sumom faznih komponenata. Taj vektor predstavlja okretno magnetsko polje vrijednosti 3/2 fazne amplitude i on rotira sinkronom brzinom vrtnje. Na *Slici 2.7* prikazana je suma faznih vektora jakosti magnetskog polja u rezultantni prostorni vektor za vremenski period: *a*, s.

Vektor jakosti magnetskog polja \vec{H} moguće je prikazati vektorom magnetske indukcije \vec{B} preko izraza (2.28):

$$\vec{B} = \mu \cdot \vec{H} \tag{2.28}$$

Pri čemu je:

 μ = 1,257 · 10⁻⁶ H/m - Magnetska permeabilnost zraka

Biot - Savartovim zakonom može se izraziti vektor magnetske indukcije u zračnom rasporu kaveznog motora $\overrightarrow{B_{sr}}$ preko vektora struje koja protječe kroz element vodiča statora $I_{s} \cdot d\vec{l}$ kao što je to prikazano izrazom (2.29):

$$\overrightarrow{B_{\rm sr}} = \frac{\mu_0}{4 \cdot \pi} \cdot I_{\rm s} \cdot \oint_{\rm l} \frac{d\vec{l} \, {\rm x} \, \vec{r}_0}{r^2}$$
(2.29)

Pri čemu je:

- \vec{r}_0 Jedinični vektor pomaka od elementa vodiča statora do referentne interesne točke na položaju rotorskog štapa
- $r = \delta$ mm Vrijednost udaljenosti između statorskog i rotorskog vodiča jednaka zračnom rasporu

Prostorni vektor superponiranih elementarnih elektromagnetskih sila $\vec{F_e}$ koje djeluju na elemente vodiča rotora kroz koje protječu struje rotora $I_r \cdot d\vec{l}$ gdje postoji magnetska indukcija $\vec{B_{sr}}$ može se prikazati izrazom (2.30):

$$\overrightarrow{F_{\rm e}} = I_{\rm r} \cdot \int \overrightarrow{B_{\rm sr}} \times d\vec{l}$$
(2.30)

Iz izraza (2.30) lako se na temelju sprega prostornih vektora sila $\overrightarrow{F_e}$ i srednjeg promjera stroja na zračnom rasporu *d*, mm dobiva prostorni vektor elektromagnetskog momenta (2.31):

$$\overrightarrow{M_{\rm e}} = \frac{d}{2} \cdot I_{\rm r} \cdot \int \overrightarrow{B_{\rm sr}} \, {\rm x} \, {\rm d} \vec{l}$$
(2.31)

Način prikaza fizikalne slike kaveznog motora posredstvom prostornog vektora (2.28) - (2.31) omogućuje intuitivnije razumijevanje fizikalne slike, dok prikaz s pomoću električnih krugova (2.12) - (2.27) pruža detaljniji uvid u utjecajne faktore vezane na izvedbu kaveznog motora.

2.3 Izvedbe asinkronog motora prema NEMA i IEC standardu

Standardi Američkog Nacionalnog udruženja proizvođača električne opreme (en. *National Electrical Manufacturers Association* (NEMA) i Međunarodna elektrotehnička komisija (en. *International Electrotechnical Commission* (IEC)) propisuju klasifikaciju karakteristika za proizvođače elektromotora od kojih se neke iskazuju natpisnom pločicom. Te karakteristike uključuju: momentnu karakteristiku, faktor pogona/vrsta pogona, faktor snage, ukupni stupanj korisnosti, izvedbu oblika motora, način hlađenja, temperaturne razrede izolacije, te klasu zaštite. Poznavanje standardiziranih karakteristika izvedbi važno je pri kako bi odabrali prikladan elektromotor za pripadajući radni stroj, te tako postigli pouzdan rad i optimalne troškove održavanja. Kroz sljedeća potpoglavlja bit će objašnjene klasifikacije tih karakteristika po NEMA i IEC standardima, te će biti prikazan primjer očitavanja natpisne pločice motora.

2.3.1 Momentna karakteristika motora

Pošto je karakteristika tereta elektromotornih pogona funkcija brzine vrtnje: $M_t = f(n)$, nužno je i Moment motora prikazati u zavisnosti s brzinom vrtnje, odnosno klizanjem: M = f(n) = f(s). Tako je moguće s obzirom na radnu točku kao sjecište dvaju krivulja odabrati motor s odgovarajućom momentnom karakteristikom.

Prekretni moment M_p , Nm definira maksimalnu vrijednost opterećenja motora. Vrijednost klizanja pri kojem se postiže prekretni moment naziva se prekretno klizanje s_{pr} . Shodno navedenom momentnu karakteristiku asinkronog motora moguće je prikazati Klossovom jednadžbom po izrazu (2.28):

$$\frac{M}{M_{\rm pr}} = \frac{2}{\frac{s}{s_{\rm pr}} + \frac{s_{\rm pr}}{s}}$$
(2.28)

Cijela karakteristika momenta ucrtana na temelju izraza (2.28) prikazana je Slikom 2.8. [9]

Slika 2.8 Potpuna momentna karakteristika

Iz potpune momentne karakteristike prikazane *Slikom 2.8* vidljivo je da se iznad osi apscisa nalaze pozitivni momenti koji okreću rotor u smjeru okretnog magnetskog polja. Točka s = 1 označuje stanje pri kojem motor stoji, motorsko područje omeđeno osi apscisa, te točkama s = 1 i s = 0 podrazumijeva isti smjer momenta i brzine vrtnje.

Stabilna grana motorskog područja momentne karakteristike omeđena točkama s = 0 i $s = s_{pr}$ podrazumijeva brži rast momenta motora u odnosu na moment tereta pri povećanju klizanja. Na tom dijelu momentne karakteristike asinkroni motor radi u ustaljenom stanju zbog zadovoljenog uvjeta stabilnosti. Karakteristične točke motorskom području momentne karakteristike prikazane su *Slikom 2.9.* [9]

Slika 2.9 Karakteristične točke momentne karakteristike motora

Karakteristične su četiri točke vrijednosti okretnog momenta u intervalu opadanja klizanja od s = 1 do s = s_n :

- $M_{\rm p}$ Potezni moment, Nm
- M_s Moment sedla, Nm
- M_{pr} Prekretni moment, Nm
- *M*_n Nazivni moment u radnoj točki, Nm [10]

NEMA i IEC klasifikacije asinkronih motora prema momentnim karakteristikama prikazane su *Tablicom 2.1.* [12]

Tablica 2.1 NEMA i IEC klasifikacija izvedbi asinkronih motora prema momentnim karakteristikama

Karakteristike izvedbi	Potezni moment Mp, (%Mn)	Moment sedla Ms, (%Mn)	Prekretni moment Mpr, (%Mn)	Potezna struja Ip, (%In)	Klizanje	Uobičajena primjena	Relativna efiksanost
Izvedba A Srednji potezni moment i visoka potezna struja	70-275	65–190*	175–300	Nije definirano	0.5–5%	U slučajevima kad je zahtjevani okretni moment pri pokretanju relativno nizak: Ventilatori, puhala, centrifugalne pumpe	Srednja ili visoka
Izvedba B Srednji potezni moment i srednja potezna struja	70–275	65–190*	175–300 [°]	600-800	0.5–5%	U slučajevima kad je zahtjevani okretni moment pri pokretanju relativno nizak: Ventilatori, puhala, centrifugalne pumpe	Srednja ili visoka
Izvedba C Visok potezni moment i srednja potezna struja	200–285	140-195*	190-225	600800	1~5%	U slučajevima zahtjeva pokretanja pri relativno visokom okretnom momentu: Konvejeri, drobilice, kompresori, klipne pumpe, mješalice	Srednja
Izvedba D Visok potezni moment i visok iznos klizanja	275	Nije definirano	Nije definirano	600-800	≥5%	U slučajevima visokih vršnih opterećenja sa ili bez zamašnjaka: Udarne preše, škare za metal, dizala, vitla, pumpe naftnih bušotina	Srednja
		Nation	al Electric	al Manufa	cture	s Association	
IEC Izvedba H Visok potezni moment i visoka potezna struja	200–285	140–195*	190–225 [°]	800-1000	1–5%	U slučajevima zahtjeva pokretanja pri relativno visokom okretnom momentu: Konvejeri, drobilice, kompresori, klipne pumpe, mješalice	Srednja
IEC Izvedba N Srednji potezni moment i visoka potezna struja	75–190*	60–140*	160-200*	800-1000	0.5–3%	U slučajevima kad je zahtjevani okretni moment pri pokretanju relativno nizak: Ventilatori, puhala, centrifugalne pumpe	Srednja ili visoka

Iznosi poteznog momenta i momenta sedla u *Tablici 2.1* dani su u postocima nazivnog momenta, dok je iznos potezne struje dan postotkom nazivne struje.

Momentne karakteristike različitih izvedbi asinkronih motora po NEMA i IEC standardu prikazane su *Slikom 2.10.* [12]

Slika 2.10 Momentne karakteristike različitih izvedbi

Od posebnog interesa za praktični dio ovog rada su karakteristike NEMA B/IEC N zbog toga što se primjenjuju za pogon centrifugalnih crpki.

2.3.2 Temperaturni razredi izolacije

Izolacija statorskih namota provodi se izolacijskim materijalima uz lakove za impregniranje namota sukladno toplinskoj klasifikaciji IEC 60085 standarda prikazanoj *Tablicom 2.2.* Vrijednosti temperatura podrazumijevaju temperaturu okolnog zraka u iznosu od 40 °C. [9]

Toplinska klasa	t _{max} , °C
A	105
E	120
В	130
F	155
Н	180

Tablica 2.2 IEC 60085 klasifikacija toplinske izolacije

NEMA MG-1 standard propisuje mjerenje temperature namota na dva načina: mjerenjem otpora i mjerenjem kontaktnim senzorima temperature. [14] 2.3.3 Klasifikacija ostalih karakteristika kaveznog motora

- Faktor snage $\cos \varphi$

Definira odnos prividne snage uzete iz mreže S_N , kVA i nazivne radne snage P_N , kW prema izrazu (2.29):

$$\cos\varphi = \frac{P_{\rm N}}{S_{\rm N} \cdot \eta_{\rm uk}} \tag{2.29}$$

Prividna snaga S_N , kVA trofaznog asinkronog motora definirana je nazivnim naponom U_N , kV i nazivnom strujom elektromotora I_N , A prema izrazu (2.30):

$$S_{\rm N} = \sqrt{3} \cdot U_{\rm N} \cdot I_{\rm N} \tag{2.30}$$

[14]

- Vrste pogona

Pri narudžbi kaveznog motora, naručitelj je dužan specificirati Vrstu pogona prema IEC 60034-1 klasifikaciji sukladno *Tablici 2.3.* [13]

Vrsta pogona	Opis vrste pogona
S1	Kontinuirani pogon
S2	Kratkotrajni pogon
S3	Isprekidani pogon bez utjecaja zaleta
S4	Isprekidani pogon s utjecajem zaleta
S5	lsprekidani pogon s utjecajem zaleta i električnim kočenjem
S6	Trajni pogon s isprekidanim opterećenjem
S7	Neprekidni pogon sa zaletom i električnim kočenjem
S8	Neprekidni pogon s periodičkom promjenom brzine vrtnje
S9	Isprekidan pogon s neperiodičnim promjenama brzine i opterećenja
S10	Trajni pogon s karakterističnim promjenjivim opterećenjem

- Stupanj korisnosti

Ukupni stupanj korisnosti η_{uk} pri nazivnom opterećenju mora sukladno standardima IEC 60034-2-1 i IEEE 112 u obzir uzeti sljedeće gubitke:

- Jouleove gubitke $I^2 \cdot R$ u statoru
- Jouleove gubitke $I^2 \cdot R$ u rotoru
- Gubitke u željeznoj jezgri
- Mehaničke gubitke uslijed trenja i strujanja zraka
- Dodatne gubitke

Ukupni stupanj korisnosti se može iskazati izrazom (2.31): [14]

$$\eta_{\rm uk} = \frac{P_{\rm izl}}{P_{\rm ul}} \tag{2.31}$$

$$\eta_{\rm uk} = \frac{P_{\rm N}}{\sqrt{3} \cdot U_{\rm N} \cdot I_{\rm N} \cdot \cos\varphi}$$

Klasifikacija iznosa stupnja korisnosti kaveznog motora koji rade na frekvenciji 50 Hz provedena je standardom IEC 60034-30 na sljedeće razrede: [13]

- IE 1 Standardna učinkovitost
- IE 2 Visoka učinkovitost
- IE 3 Premijerna učinkovitost
- IE 4 Super-premijerna učinkovitost

Intervali vrijednosti ukupnog stupnja korisnosti prema navedenim razredima za kavezne motore nazivne snage 200-1000 kW proizvođača Končar-MES d.d. dane su *Tablicom 2.4.* [13]
Razred	Ukupni stupanj iskoristivosti	$\eta_{\mathrm{uk}}^{},$ %
IE1	92,4 - 95	
IE2	93,5 - 95,8	
IE3	94,6-95,8	
IE4	95,4 - 95,5	

Tablica 2.4 Razredi stupnja korisnosti za kavezne motore 200-1000 kW

Donje vrijednosti intervala odnose se na motore s četiri para polova, dok se gornje vrijednosti odnose na motore s jednim parom polova. Prema regulativi Europske Unije iz 2011. za indukcijske motore s vrstom pogona S1 minimalni razred korisnosti je IE2. Regulativa iz 2017. godine deklarira IE3 kao minimalni razred stupnja korisnosti za neupravljive indukcijske motore snage 7,5 kW - 375 kW. [13]

- Način hlađenja elektromotora

Usporedba oznaka različitih izvedbi sustava hlađenja kaveznog motora prema IEC 60034 i NEMA MG 1 standardima dana je *Tablicom 2.5.* [14]

Karakteristični broj izvedbe rashladnog kruga		Karakteristični broj načina strujanja zraka		
4 Hlađenje slobodnim strujanjem okolnog medija	⁵ Integrirani izmjenjivač topline s okolnim medijem	6 Montirani izmjenjivač topline s okolnim medijem		
				0 Hlađenje strujanjem zraka usliijed prirodne konvekcije
IC411 IC4A1A1	IC511 IC5A1A1	IC611 IC6A1A1		1
i				Hlađenje prisilnim strujanjem zraka posredstvom ventilatora na vratilu stroja
				5 Hlađenje strujanjem ostvareno integriranom nezavisnomjedinicom
			s Association	6 Hlađenje strujanjem zraka ostvareno nezavisnom jedinicom montiranom na stroj
				7 Hlađenje strujanjem zraka ostvareno vanjskom odvojenom jedinicom
				8 Hlađenje strujom zraka vanjskog izvora

Tablica 2.5 Klasifikacija izvedbi sustava hlađenja prema NEMA i IEC

Standardni kavezni motori hlade se prisilnim strujanjem zraka posredstvom ventilatora na vratilu stroja, odnosno izvedbom IC411 samo-ventilirajućeg sustava hlađenja prikazanom *Slikom 2.11.* [15]

Slika 2.11 Strujanje zraka IC411 izvedbe samo-ventilirajućeg sustava hlađenja

- Izvedeni oblici

Standardizirani oblici konstrukcijske izvedbe kaveznih motora prema IEC 60043 standardu omogućuju lakši odabir prikladnog motora za pogon nekog određenog radnog stroja. Klasifikacija je prikazana *Slikom 2.12.* [13]

oznaka skica Objasnjenje oznaka skica IM B3 IM 1001 IM V1 IM 3011 IM V1 IM 3011 pričvrsn prema pogonski ležaja IM B35 IM 2001 pričvrsna prirubnica oblika A prema DIN 42948 na pogonskoj strani u blizini ležaja IM V3 IM 3031 pričvrsna prema pogonski ležaja IM B34 IM 2101 pričvrsna prirubnica oblika C prema DIN 42948 na pogonskoj strani u blizini ležaja IM V5 IM 1011 IM B34 IM 2101 pričvrsna prirubnica oblika C prema DIN 42948 na pogonskoj strani u blizini ležaja IM V5 IM 1011	a prinubnica oblika A DIN 42948 na ioj strani u blizini a prinubnica oblika A DIN 42948 na ioj strani u blizini
IM B3 IM 1001 IM V1 IM 3011 IM V1 IM 3011 IM V1 IM 3011 pričvrsn prema pogonski lažaja IM B35 IM 2001 IM V1 IM 3011 IM V3 IM 3031 IM V3 IM 3031 IM V3 IM 3031 pričvrsn prema pogonski lažaja IM B34 IM 2101 IM V3 IM 201 IM V3 IM 3031 IM V5 IM 1011 IM V5 IM 1011 IM V5 IM 1011	a prinubnica oblika A DIN 42948 na oj strani u blizini a prinubnica oblika A DIN 42948 na oj strani u blizini
IM B35 IM 2001 pričvrsna prirubnica oblika A prema DIN 42948 na pogonskoj strani u blizini ležaja IM 3031 pričvrsna prirubnica oblika IM 834 IM 2101 pričvrsna prirubnica oblika IM 2101 pričvrsna prirubnica oblika IM 2948 na pogonskoj strani u blizini ležaja IM V5 IM 1011 pričvrsna prirubnica oblika A rrema DIN 42948 na pogonskoj strani u blizini	a prirubnica oblika A DIN 42948 na oj strani u blizini
IM B34 IM 2101 pričvrsna prirubnica oblika IM 2101 pričvrsna prirubnica oblika IM 2101 pričvrsna prirubnica oblika IM 95 pričvrsna prirubnica oblika	
IM PS	
IM 3001 pogonskoj strani u blizini IM 1031	
IM B6 IM 1051 IM V8 IM 9111 IM V8 IM 9111 IM V8 IM 9111 IM V8	ili V18 bez ležajnog ez valjnog ležaja) na oj strani
IM B7 IM 1061 IM V9 IM 9131 Oblik V3 Stila () b pogonsk	i ili V19 bez ležajnog ez valjnog ležaja) na oj strani
IM B8 IM 1071 IM V18 IM 3611 IM V18 IM 3611 IM V18 IM 3611	a prirubnica oblika C DIN 42948 na oj strani u blizini
IM B9 IM 9101 oblik B5 ii B14 bez Iežajnog štita (i bez valjnog ležaja) na pogonskoj strani IM V19 IM 3631 ii B14 bez IM V19 IM 3631 ii B14 bez IM V19 IM 3631 ii B14 bez	a prirubnica oblika C DIN 42948 na oj strani u blizini
IM B14 IM 3601 pŕičvrsna prirubnica oblika C prema DIN 42948 na pogonskoj strani u blizini ležaja	

Slika 2.12 Izvedeni oblici kaveznih motora prema IEC 60043

- Visina osi kaveznog motora

Prema IEC i NEMA standardima najvažnija dimenzija za definiranje veličine kaveznog motora je visina osi koja se po IEC standardu označuje kao: *H*, mm, a po NEMA standardu kao: *D*, in. Navedena dimenzija označena je crvenom bojom na *Slici 2.13.* [16]

Slika 2.13 Označavanje visine osi kaveznog motora

- Stupanj zaštite elektromotora od prodiranja stranih tvari, prašine i vode

Definiran je IEC 60034-5 i NEMA MG-1 standardima preko oznake IP AB, pri čemu je A brojčana oznaka stupnja mehaničke zaštite, dok je B brojčana oznaka zaštite od vode. Značenje navedenih oznaka prikazano je *Tablicom 2.6.* [12] [13]

	IF	C	
А	Mehanička zaštita	В	Zaštita od vode
4	Zaštita od zrnatih stranih tijela d > 1 mm	4	Zaštita od prskajuće vode iz svih smjerova
5	Zaštita od taloženja prašine, potpuna zaštita od dodira	5	Zaštita od mlaza vode iz svih smjerova
6	Zaštita od prodiranja prašine, potpuna zaštita od dodira	6	Zaštita od poplave
		7	Zaštita od uroniavania u vodu pri određenim uvjetima

8

Tablica 2.6 Značenje numeričkih oznaka A i B IP klasifikacije stupnja zaštite

Standardni kavezni motori izvedeni su s IP 55 stupnjem zaštite, izvedbe kaveznih motora s naprednijim stupnjevima zaštite izrađuju se po narudžbi.

2.3.4 Očitavanje karakteristika s natpisnih pločica

Podaci natpisnih pločica razlikuju se zavisno o vrsti proizvođača i seriji motora, te je za točno očitavanje nužno koristiti priručnike proizvođača za pripadajuću seriju. [13][15]

Primjer očitavanja serijskog broja pločice elektromotora Simotics HV/TN Serija H Compact: [15]

1LA4 354-4A N60-Z

Zaštita od trajnog potapanja u vodu

Oznake 1,2 i 3: Izvedba hlađenja motora - 1LA: Prema IC 411

Oznaka 4: Broj serije

Oznake 5 i 6: Prve dvije znamenke vrijednosti dimenzije visine osi - 35: H = 350 mm

Oznaka 7: Duljina rotorskog paketa - 4: Dugi rotorski paket

Oznaka 8: Broj polova - 4: Dva para polova

Oznaka 9: Izvedba rotorskog kaveza - A: Standardni aluminijski kavez

Oznaka 10: Vrsta napajanja - N: Visokonaponsko mrežno napajanje

Oznaka 11: Parametri napona napajanja - 6: 6 kV, 50 Hz

Oznaka 12: Izvedeni oblik - 0: IM B3 izvedba

Oznaka 13: Specifičnost izvedbe određena dodatnim kodom

Uz serijski broj uvijek su navedene sljedeće karakteristike: klasa izolacije, vrsta hlađenja, nazivne vrijednosti snage, faktora snage, te napona i struje statorskih namota za različite načine pokretanja i frekvenciju mreže. Uz to može biti naveden razred momentne karakteristike, faktor i/ili vrsta pogona, temperatura okoline, te stupanj korisnosti. [13]

Prikazanim postupkom očitane su tehničke karakteristike kaveznih motora i centrifugalnih crpki elektromotornih pogona u praktičnom djelu rada.

3. POKAZATELJI STANJA ISPRAVNOSTI KAVEZNOG MOTORA

Kao što je već spomenuto u uvodu, ispravnu primjenu strategije održavanja po stanju odlikuju optimalna vremena zastoja uslijed provođenja zahvata preventivnog i korektivnog održavanja. Razlog tome je pravovremen i dovoljno precizan uvid u stanje elektromotornog pogona dobiven kontinuiranim ili periodičkim nadzorom fizikalnih parametara stroja. Na općenitoj razini električnih strojeva karakteristike vibracija i iznos temperature uobičajeni su parametri koje se nadzire.

Vibracije se mogu definirati kao manifestacija osciliranja veličine koja opisuje gibanje mehaničkog sustava kroz promatrani period vremena. Vremenska promjena iskazuje se faznim kutom, koji zajedno s faznim pomakom definira promatrani interval vibriranja. Fazni kut umnožak je kružne frekvencije vibracija i proteklog vremena. [7]

Elektromotorni pogon dinamički je sustav na koji djeluju razne vremenski promjenjive pobude koje posljedično uzrokuju pripadajuće odzive u obliku mehaničkih vibracija.

Već se u drugom poglavlju pri objašnjenju ukupnog stupnja korisnosti kaveznog motora pokazalo da je stvaranje toplinske energije pri pretvorbi električne energije u mehaničku neizbježno. Shodno tome ne iznenađuje da se temperatura kao pokazatelj razine toplinske energije smatra jednim od glavnih parametara za kontrolu stanja električnih strojeva.

Kroz sljedeća dva potpoglavlja bit će prikazane temeljne fizikalne slike navedenih fizikalnih parametara, te utjecaj različitih vrsta neispravnosti komponenata elektromotornog pogona s kaveznim motorom na iste.

3.1 Vibracije

U mehaničkom sustavi do pojave slobodnih vibracija dolazi uslijed kontinuirane promjene potencijalne energije u kinetičku i obratno. Prisilne vibracije mehaničkog sustava odziv su na prisilnu pobudu pripadajuće frekvencije, te njihovo postojanje nije uvjetovano kontinuiranom promjenom jednog oblika mehaničke energije u drugi. [7]

3.1.1 Matematički model vibracija kompleksnog sustava

Kompleksni vibracijski sustavi sastoje se od komponenata koje karakterizira nejednolika raspodjela karakteristika akumulacije i disipacije energije koja kontinuirano varira s obzirom na položaj u prostoru. Takav sustav zahtijevao bi rješavanje kompleksnih parcijalnih diferencijalnih jednadžbi za dobivanje odziva svake komponente sustava. Kako bi se model pojednostavnio aproksimira se sustavom zbijenih masa: m, kg, povezanih oprugama krutosti: k, N/m i prigušnim elementima koeficijenta prigušenja c, Ns/m. Pojednostavljeni matematički model rezultira sustavom običnih linearnih diferencijalnih jednadžbi, koje se rješava Modalnom analizom. [7]

Modalna analiza temelji se na činjenici da dinamički sustavi definirani pojednostavljenim matematičkim modelom teže slobodnom vibriranju na kružnim frekvencijama određenih iznosa koje se nazivaju kružne prirodne frekvencije ω_i , rad/s. Sustav na tim frekvencijama vibrira po geometrijskom obrascu koji se naziva prirodni oblik vibriranja. Prirodne frekvencije i pripadajući prirodni oblici vibriranja skupno se nazivaju modalnim karakteristikama, analizom matematičkog modela pokazat će se da je odziv na proizvoljnu prisilnu pobudu moguće prikazati linearnom kombinacijom više različitih prirodnih oblika vibriranja. [7]

Temelj Modalne analize je matematički model slobodnih vibracija neprigušenog mehaničkog sustava. Matrična jednadžba gibanja za taj model dana je izrazom (3.1):

$$[M] \cdot [\ddot{y}] + [K] \cdot [y] = 0$$
 (3.1)

Pri čemu je:

[M] - Matrica masa sustava dimenzija $n \ge n$

Tehnički fakultet Sveučilišta Jurja Dobrile u Puli

{ ÿ } - Vektor akceleracije

[K] - Matrica krutosti sustava dimenzija n x n

{ y } - Vektor pomaka

n - broj stupnjeva slobode gibanja sustava

Kompleksan zapis odziva sustava dan je izrazom (3.2):

$$\{y\} = \{A\} \cdot e^{j\omega t}$$
(3.2)

Uvrštavanjem izraza (3.2) u izvornom obliku, ali i nakon dvostruke derivacije po vremenu u izraz (3.1) dobivamo izraz (3.3) koji se naziva problem svojstvenih vrijednosti:

$$[[\omega^{2}] \cdot [M] - [K]] \cdot \{A\} = 0$$
(3.3)

[ω^2] - Matrica svojstvenih vrijednosti, odnosno kvadrata prirodnih frekvencija

{ A } - Svojstveni vektor, odnosno vektor prirodnih oblika vibriranja

Razmatraju se netrivijalna rješenja { A } \neq [0] što rezultira karakterističnom jednadžbom sustava danom izrazom (3.4):

det [[
$$\omega^2$$
] · [M] - [K]] = 0 (3.4)

Karakteristična jednadžba sustava ima *n* korijena za ω^2 , što znači daj broj prirodnih frekvencija: ω_i , rad/s jednak broju *n* stupnjeva slobode gibanja sustava. Uvrštavanjem izračunate matrice svojstvenih vrijednosti [ω^2] u izraz (3.3) dobiva se vektor prirodnih oblika vibriranja { A }.

Uvjet ortogonalnosti proizlazi iz svojstva simetričnosti matrica [M] i [K], te je dan izrazom (3.5) tenzorskom notacijom:

$$(\omega_{i} - \omega_{j}) \cdot A_{i}^{\mathsf{T}} \cdot M_{ij} \cdot A_{j} = 0$$
(3.5)

Iz čega slijedi (3.6):

$$A_{i}^{\mathsf{T}} \cdot M_{ij} \cdot A_{j} = \left\{ \begin{array}{c} 0 \text{ za } i \neq j \\ M_{i} \text{ za } i = j \end{array} \right\}$$
(3.6)

Pri čemu je:

M_i - Modalna masa

Normalizacija svojstvenih vektora provodi se jediničnom vrijednosti modalne mase (3.7):

$$A_i^{\mathsf{T}} \cdot M_{ij} \cdot A_j = M_i = 1 \tag{3.7}$$

i = 1, ..., n

j = 1, ..., n

Prisilne vibracije neprigušenog sustava s *n* stupnjeva slobode gibanja predstavljene su sustavom nehomogenih jednadžbi gibanja po izrazu (3.8):

$$[M] \cdot \{ \ddot{y} \} + [K] \cdot \{ y \} = \{ F(t) \}$$
(3.8)

Pri čemu je:

{ F(t) } - Vremenski promjenjiv vektor sila pobude

Odziv sustava na prisilnu pobudu moguće je izraziti linearnom kombinacijom svojstvenih vektora, odnosno vektora prirodnih oblika vibriranja sukladno izrazu (3.9):

$$\{y\} = \{A\} \cdot \{q\}$$
(3.9)

Potrebno je uz to izvršiti i transformaciju vektora početnih uvjeta { y(0) } i { $\dot{y}(0)$ } prema izrazima (3.10) i (3.11):

$$\{q(0)\} = \{A\}^{-1} \cdot \{y(0)\}$$
 (3.10)

$$\{\dot{q}(0)\} = \{A\}^{-1} \cdot \{\dot{y}(0)\}$$
 (3.11)

Izraz (3.9) predstavlja transformaciju koordinata iz prostora trajektorije u prostor poopćenih koordinata, uvrštavanjem izraza (3.9) u izraz (3.8) dobiva se izraz (3.12):

$$[M] \cdot \{A\} \cdot \{\ddot{q}\} + [K] \cdot \{A\} \cdot \{q\} = \{F(t)\}$$
(3.12)

Množenjem cijelog izraza (3.12) s vektorom { A^T} slijeva i uvažavanjem uvjeta normalizacije (3.6) dobiva se izraz (3.13):

$$[\widehat{\mathsf{M}}] \cdot \{ \ddot{\mathsf{q}} \} + [\widehat{\mathsf{K}}] \cdot \{ \mathsf{q} \} = \{ \widehat{\mathsf{F}}(\mathsf{t}) \}$$
(3.13)

Pri čemu je:

{ $\hat{F}(t)$ } = { A^{T} } · { F(t) } - Normalizirani vektor sila pobude

- [Î M] Dijagonalna matrica mase
- [**K**] Dijagonalna matrica krutosti

Sustav s *n* jednadžbi jednostavnog neprigušenog oscilatora može se prikazati tenzorskim zapisom preko izraza (3.14):

$$\widehat{M}_{i} \cdot \ddot{q}_{i} + \widehat{K}_{i} \cdot q_{i} = \widehat{F}(t)_{i}$$
(3.14)

i = 1, ..., n

Za $\hat{F}(t)_i = 0$ slijede svojstvene vrijednosti neprigušenog sustava po izrazu (3.15):

$$\omega_{\rm i}^2 = \frac{\widehat{\mathcal{K}}_{\rm i}}{\widehat{\mathcal{M}}_{\rm i}} \tag{3.15}$$

Iz izraza (3.15) i izraza (3.7) slijedi da je dijagonalnu normaliziranu matricu krutosti \hat{K}_i u tenzorskom zapisu moguće zapisati kao što je to prikazano izrazom (3.16):

$$\widehat{K}_{i} = \omega_{i}^{2} \tag{3.16}$$

Ukupni modalni odziv sustava po poopćenoj koordinati bit će suma homogenog odziva slobodnih vibracija sustava uzrokovanih početnim uvjetima i prisilnog odziva sustava uzrokovanog normaliziranim vektorom sila pobude. Navedeno je prikazano tenzorskom notacijom preko izraza (3.17):

$$q_{\rm i} = q_{\rm il} + q_{\rm if} \tag{3.17}$$

$$q_{i} = q_{i}(0) \cdot \cos(\omega_{i} \cdot t) + \frac{\dot{q}_{i}(0)}{\omega_{i}} \cdot \sin(\omega_{i} \cdot t) + \int_{0}^{t} \widehat{\mathcal{F}}(\tau)_{i} \cdot \sin(\omega_{i} \cdot (\tau - \tau)) d\tau$$

[7]

Svaka i - ta komponenta ukupnog modalnog odziva sustava doprinos je i - tog prirodnog oblika vibriranja A_i vektoru ukupnog stvarnog odziva u koordinatnom sustavu trajektorije y_i . [7]

Za opisivanje kompleksnog dinamičkog sustava kao što je kavezni motor, potrebno je nadograditi predstavljeni model matricom prigušenja [C]. U idealiziranom neprigušenom modelu na kojem se temelji Modalna analiza, sustav ostvaruje sinkronizirano pomicanje u smjerovima svih stupnjeva slobode gibanja po obrascima prirodnih oblika vibriranja. Takva sinkroniziranost nije moguća kad se u obzir uzme utjecaj prigušenja. Prigušeni sustavi ne posjeduju isključivo realne prirodne oblike vibriranja, ako se takav sustav uzbudi pobudom na nekoj njegovoj prirodnoj frekvenciji proporcionalnost prirodnog oblika vibriranja bit će narušena. [7]

Viskozno prigušenje jedan je od modela disipacije energije. Specifičnim odabirom parametara prigušenja matrice [C] moguće je postići ortogonalnost te matrice sa svojstvenim vektorima neprigušenog sustava prema izrazu (3.18):

$$A_i^{l} \cdot C_{ij} \cdot A_j = C_i = 2 \cdot \xi_i \cdot \omega_i$$
(3.18)

Pri čemu je:

ξ_i - Faktor modalnog prigušenja

Viskozno prigušenje također se naziva i proporcionalno ili Rayleighovo prigušenje. Sustav jednadžbi proporcionalno prigušenog prisilno pobuđenog sustava jednak je izrazu (3.19):

$$\widehat{M}_{i} \cdot \ddot{q}_{i} + \widehat{C}_{i} \cdot \dot{q}_{i} + \widehat{K}_{i} \cdot q_{i} = \widehat{F}(t)_{i}$$
(3.19)

Uvrštavanjem izraza (3.7), (3.16) i (3.18) u izraz (3.19) slijedi izraz (3.20):

$$\ddot{q}_{i} + 2 \cdot \xi_{i} \cdot \omega_{i} \cdot \dot{q}_{i} + \omega_{i}^{2} \cdot q_{i} = \widehat{F}(t)_{i}$$
(3.20)

Iz izraza (3.20) vidljivo je da proporcionalno prigušeni sustav ima realne dijelove prirodnih oblika vibriranja jednake neprigušenom sustavu. Uz realne dodatno posjeduje i imaginarne dijelove prirodnih oblika vibriranja koji predstavljaju fazne pomake perioda odvijanja pomaka po pripadajućem geometrijskom obrascu u odnosu na trenutak pobude. Posljedica prigušenja vidljiva je na snižavanju vrijednosti pripadajućih prirodnih frekvencija sustava, pa su tako prigušene kružne prirodne frekvencije ω_d , rad/s definirane izrazom (3.21):

$$\omega_{\rm d} = \sqrt{1 - \xi_{\rm i}^2} \cdot \omega_{\rm i} \tag{3.21}$$

Faktor modalnog pri gušenja ξ_i definiran je izrazom (3.22)

$$\xi_{i} = \frac{1}{2} \cdot \left(\frac{c_{m}}{\omega_{i}} + c_{k} \cdot \omega_{i} \right)$$
(3.22)

Pri čemu su:

c_m i c_k - Rayleighovi koeficijenti prigušenja

Modalni doprinosi ukupnom odzivu q_i računaju se kao i u slučaju neprigušenog sustava po izrazu (3.15), pri čemu uz neprigušenu prirodnu frekvenciju ω_i , rad/s za izračun realnih dijelova odziva treba u obzir uzeti i prigušenu prirodnu frekvenciju ω_d , rad/s definiranu izrazom (3.21) za računanje imaginarnih dijelova odziva. Velika se važnosti pri projektiranju električnih strojeva pridaje modalnim karakteristikama cjelokupnog dinamičkog sustava. Izvedbom komponenata stroja odgovarajućih modalnih karakteristika sprječava se poklapanje frekvencija pobude različitih izvora s rezonantnim frekvencijama realnog prigušenog sustava. [7]

3.1.2 Karakteristične pobude dinamičkog sustava kaveznog motora

Vibracije koje se pojavljuju u električnim strojevima možemo podijeliti prema uzroku njihova nastanka na mehaničke i elektromagnetske. Mehanički uzroci posljedica su interakcija dinamičkih dijelova stroja: rotora, vratila i ležajeva. Elektromagnetski uzroci javljaju se u statorskim i rotorskim namotima, odnosno aktivnim dijelovima stroja koji iniciraju elektromehaničku pretvorbu energije. Elektromagnetski i mehanički uzroci često se pojavljuju zajedno zbog vrlo uske povezanosti elektromagnetskih prilika s mehanikom stroja. [7] [17]

Mehanička oštećenja komponenata elektromotora i elektromagnetske nepravilnosti uzrokuju dinamičke sile pobude na frekvenciji karakterističnoj za pojedino oštećenje. Analizom frekvencijskog spektra obrađenog signala odziva sustava moguće je uočiti neuobičajeno visoke razine vibracija na određenim frekvencijama. Tako je često moguće uz postojanje oštećenja otkriti i njegov uzrok. [7][17]

Uzroci karakterističnih sila pobude često su posljedica sljedećih oštećenja i neispravnosti kaveznog motora: [7]

- Neuravnoteženost mase rotora

Posljedica nepoklapanja centra mase rotora s osi rotacije. Uzroci mogu biti: loše tolerancije pri proizvodnji, nepravilnosti materijala izrade poput poroznosti i mikrošupljina, utjecaj prekomjerne topline, zamor materijala ili nepravilna montaža. Neuravnoteženost mase rotora jedna je vrsta dinamičke ekscentričnosti rotora. U radu kaveznog asinkronog motora moguća je pojavnost ekscentričnosti statičke i dinamičke prirode. Statička ekscentričnost rotora prikazana je *Slikom 3.1 a*), dok je dinamička ekscentričnost prikazana *Slikom 3.1 b*). [18]

Slika 3.1 Statička i dinamička ekscentričnost rotora kaveznog motora

Iz *Slike 3.1* očito je da os rotora miruje u slučaju statičke ekscentričnosti, a da u slučaju dinamičke ekscentričnosti ocrtava oblik krivulje. Ni jedna izvedba ne rezultira savršenim poklapanjem svih osi rotacije, pa se za električne strojeve u pravilu tolerira maksimalna ekscentričnost do 10% veličine zračnog raspora. Obje vrste ekscentričnosti uzrok su vibracija kućišta motora uslijed djelovanja radijalnih magnetskih sila pri asimetriji elektromagnetskih prilika, a ujedno su i posljedica različitih vrsta neispravnosti razmatranih kroz ovo potpoglavlje.

Neuravnoteženost mase jedan je od glavnih uzroka dinamičke ekscentričnosti rotora. Zbroj vektora svih neuravnoteženosti mase rotora može se prikazati jednim rezultantnim vektorom neuravnoteženosti. [7]

Neuravnoteženost mase uzrokuje silu pobude na frekvenciji f_{nm} , Hz mehaničke brzine vrtnje *n*, min⁻¹ sukladno izrazu (3.23):

$$f_{\rm nm} = \frac{n}{60} \tag{3.23}$$

Poseban slučaj neuravnoteženosti mase čest je kod velikih strojeva: uslijed dugog mirovanja uobičajeni elastični progib relativno dugog rotora protokom vremena postaje plastična deformacija. Plastična deformacija uzrokuje pomak osi inercija, što dovodi do dinamičke ekscentričnosti u slučaju da izvedba ležaja ne dozvoljava radijalni pomak. [7][18]

- Ekscentričnost rotora

Os rotacije rotora ne poklapa se s osi simetrije statorskog paketa, pri čemu zračni raspor može biti konstantan ili varijabilan. Netočna montaža spojke ili rotora, radijalna zračnost ležajeva, oštećenja ležajeva i pripadajućih dosjeda, te pogreške pri proizvodnji mogu uzrokovati ovu vrstu neispravnosti. U radu asinkronog kaveznog motora moguća je pojavnost četiri vrste statičke ekscentričnosti: paralelna, aksijalna, kutna i ona uzrokovana statičkim progibom pri kojem izvedbe ležajeva dozvoljavaju radijalni pomak. Vrste dinamičke ekscentričnosti razlikuju se s obzirom na krivulju koju ocrtava os rotora, te fazu odziva. Karakteristična frekvencija sile pobude u tom slučaju često uz temeljnu frekvenciju mehaničke brzine vrtnje n, min⁻¹ poprima dominantne vrijednosti odziva na višim harmonicima te frekvencije kao što je to prikazano izrazom (3.24): [7][18]

$$f_{\rm er} = \mathbf{v} \cdot \frac{n}{60} \tag{3.24}$$

Pri čemu je:

v - redni broj višeg harmonika: 1, ..., N

Uspoređujući izraze (3.23) i (3.24) može se uvidjeti sličnost između pobuda uslijed dinamičkih ekscentričnosti uzrokovanih neuravnoteženosti mase, te statičkih i dinamičkih ekscentričnosti uzrokovanih ostalim neispravnostima. Zbog toga je u cilju postavljanja točne dijagnoze važno poznavati detaljnije razlike tih dviju vrsta neispravnosti koje su navedene u *Tablici 3.1.* [7]

Tablica 3.1 Usporedba karakteristika vibracija uslijed neuravnoteženosti mase rotora
i ekscentričnosti rotora

Neuravnoteženost mase rotora	Ekscentričnost rotora
Visok odziv na frekvenciji prvog	Velika vrijednost omjera horizontalnih i
harmonika	vertikalnih vibracija
Mjerenja na različitim položajima su	Mjerenja na različitim položajima su
u fazi	van faze za 180°
Razine vibracija nezavisne su o	Intenzitet vibracija zavisan o
temperaturi, ali zavisne o brzini	temperaturi, ali nezavisan o brzini
vrtnje	vrtnje

Lom rotorskog štapa

Zaostala naprezanja iz tehnološkog procesa tijekom proizvodnje, radni uvjeti neusklađeni s onim iskazanim natpisnom pločicom, te varijacija struja u štapovima uslijed asimetričnih elektromagnetskih prilika samo su neki od razloga za povećana toplinska naprezanja u štapovima rotora. Toplinska naprezanja povećavaju mogućnost loma štapa, što posljedično dovodi do još veće asimetrije okretnog magnetskog polja, povećane struje kroz ostale štapove i daljnjeg propadanja stanja rotorskog kaveza. [19]

Karakteristična frekvencija pobude u tom je slučaju također povezana s frekvencijom brzine vrtnje rotora n, min⁻¹ preko izraza (3.25):

$$f_{\tilde{s}r} = v \cdot \frac{n}{60} \tag{3.25}$$

Za razliku od izraza (3.24) pobuda se uz frekvenciju osnovnog harmonika pojavljuje samo na frekvenciji harmonika drugog reda:

v = [1, 2]

[7]

- Kratkospojeni statorski namot

Različite vrste oštećenja izolacije glavni su razlozi povećanja struja koje protječu kroz statorske namote uslijed kratkog spoja između dvaju namota ili namota i mase. Kao što je poznato iz potpoglavlja 2.3 udio električne energije pretvorene u toplinsku raste proporcionalno kvadratu struje. Prema literaturi [19] životni vijek izolacije skraćuje se za 50% pri ustaljenom radu na temperaturi većoj za 10% od iznosa temperature propisanog razredom izolacije motora. Neispravnosti rotora opisane ranije u ovom poglavlju povezane s asimetrijom elektromagnetskih prilika u zračnom rasporu dodatno pospješuju oštećenja izolacije. Povišene vrijednosti struja u statorskim namotima uzrokovane kratkim spojem također doprinose distorziji okretnog magnetskog polja u zračnom rasporu stroja. Karakteristika ove neispravnosti je sporija brzina vrtnje rotora od nazivne uz veće klizanje. [2][7]

- Asimetrija okretnog magnetskog polja

Asimetrija okretnog magnetskog polja, odnosno elektromagnetskih prilika u zračnom rasporu između statora i rotora kaveznog motora zajednička je poveznica prethodno opisanih nepravilnosti komponenata kaveznog motora. Osvrtom na fizikalnu sliku principa rada asinkronog kaveznog motora predstavljenu kroz drugo poglavlje očito je da značajnije varijacije zračnog raspora δ , mm uslijed ekscentričnosti rotora dinamičke ili statičke prirode uzrokuju i varijacije induktiviteta, te posljedično i pojavnost radijalnih elektromagnetskih sila. Intenzitet struja statora i rotora s obzirom na položaj rotora također značajno utječe na radijalne elektromagnetske sile u zračnom rasporu. [17]

Asimetrija okretnog magnetskog polja u zračnom rasporu je stoga popratna pojava navedenih neispravnosti, ali i uzrok njihovog daljnjeg pogoršanja. Karakteristična je frekvencija pobude uslijed ove neispravnosti jednaka frekvenciji izmjeničnih struja statora ($f_s = 50$ Hz za neupravljivi motor) i njezinom drugom harmoniku kao što je to prikazano izrazom (3.26): [7]

$$f_{\rm emp} = v \cdot f_{\rm s} \tag{3.26}$$

Pri čemu je vrijednost rednog broja harmonika:

v = [1, 2]

Odziv na ovu frekvenciju pobude u uobičajenom prikazu frekvencijskim spektrom najčešće je prekriven utjecajem pobuda popratnih ili uzročnih neispravnosti, kao što je to pobuda na frekvenciji mehaničke brzine vrtnje i njenim višim harmonicima. Zbog toga se prisutnost asimetrije okretnog magnetskog polja najbolje uočava u spektru envelope koji će biti objašnjen u potpoglavlju 4.1.2.

- Asimetrija okretnog magnetskog polja i struja statora i/ili rotora

Specifičan slučaj koji zbog već spomenute međuzavisnosti utjecaja neispravnosti aktivnih dijelova kaveznog motora na okretno magnetsko polje i utjecaja pobuda na frekvenciji mehaničke brzine vrtnje i njenim harmonicima (3.24) najčešće dolazi do izražaja u frekvencijskom spektru brzine vibracija. Karakterizira ga specifična frekvencija sile pobude f_{emns} , Hz prikazana izrazom (3.27): [7]

$$f_{\text{emns}} = v \cdot \frac{n}{60} \pm 2 \cdot p \cdot s \cdot f_{\text{s}}$$
(3.27)

Kao što je prikazano izrazom (3.27) pobuda uzrokuje visoke vrijednosti odziva na bočnim pojasevima frekvencijskog spektra čije se središte nalazi na frekvenciji brzine vrtnje rotora i njenim višim harmonicima. Širina spektra određena je brojem pari polova p i frekvencijom klizanja $f_r = s \cdot f_s$, Hz. Jedna od vrsti dinamičke ekscentričnosti. [17]

- Oštećenja valjnih ležajeva

Uzroci oštećenja valjnih ležajeva po svojoj prirodi mogu biti mehanički i električni. Mehanički uzroci su: zamor materijala uslijed dugogodišnjeg rada, neispravne tolerancije pri proizvodnji, nedovoljno podmazivanje ili podmazivanje neprikladnim mazivom što rezultira povećanjem trenja i prekomjernim zagrijavanjem. Glavni električni uzrok su ležajne struje do kojih dolazi uslijed asimetrije elektromagnetskih prilika i dotrajalosti izolacijskih svojstava ležaja. Oštećenja rezultiraju silama pobude na frekvencijama karakterističnim za oštećeni dio ležaja: [2] [17] Frekvencija pobude uslijed oštećenja vanjske staze prstena valjnog ležaja f_{of} , Hz određena je izrazom (3.28):

$$f_{\rm of} = N_{\rm b} \cdot \frac{f_{\rm m}}{2} \cdot \left(1 - \frac{D_{\rm b} \cdot \cos(\beta)}{2 \cdot D_{\rm c}}\right)$$
(3.28)

Pri čemu je:

N_b - Broj valjnih elemenata

 $f_{\rm m} = \frac{n}{60}$ - Frekvencija mehaničke brzine vrtnje, Hz

D_b - Promjer valjnog elementa, mm

D_c - Srednji promjer kaveza ležaja, mm

 β - Kut kontakta valjnog elementa, rad

Sukladno oznakama geometrijskih karakteristika valjnih ležajeva prikazanih Slikom 3.2. [2]

Slika 3.2 Geometrijske karakteristike valjnih ležajeva

Frekvencija pobude uslijed oštećenja unutarnje staze prstena valjnog ležaja f_{if} , Hz određena je već definiranim veličinama izrazom (3.29):

$$f_{\rm if} = N_{\rm b} \cdot \frac{f_{\rm m}}{2} \cdot \left(1 + \frac{D_{\rm b} \cdot \cos(\beta)}{2 \cdot D_{\rm c}}\right) \tag{3.29}$$

Frekvencija pobude uslijed oštećenja valjnog elementa valjnog ležaja f_{re} , Hz određena je već definiranim veličinama izrazom (3.30):

$$f_{\rm re} = \frac{D_{\rm c} \cdot f_{\rm m}}{2 \cdot D_{\rm b}} \cdot \left(1 - \frac{D_{\rm b}^{2} \cdot \cos^2(\beta)}{D_{\rm c}^2}\right)$$
(3.30)

Frekvencija pobude uslijed oštećenja kaveza valjnog ležaja f_{cg} , Hz određena je već definiranim veličinama izrazom (3.31):

$$f_{\rm cg} = \frac{f_{\rm m}}{2} \cdot \left(1 - \frac{D_{\rm b} \cdot \cos(\beta)}{D_{\rm c}}\right)$$
(3.31)

- Nekorektne mehaničke tolerancije

Najčešće se odnosi na nekorektne tolerancije dosjeda ležaja s vratilom ili ležaja s kućištem. Uobičajen uzrok je pogreška pri montaži ležajeva. Takav spoj rezultirat će moduliranim signalom odziva s puno viših harmonika, uz varijabilan period modulacije. Frekvencije sila pobude ponekad se mogu podudarati s karakterističnim frekvencijama sila pobude uslijed oštećenja valjnih ležajeva. Razlikuje ih pojava buke u širem frekvencijskom pojasu oko frekvencija vršnih vrijednosti odziva. U početku ove vrste neispravnosti karakteristična je dinamička ekscentričnost popraćena najvećim intenzitetom odziva na frekvenciji mehaničke brzine vrtnje rotora odnosno frekvenciji sile pobude uslijed neuravnoteženosti rotora: f_{nm}, Hz. Daljnji razvoj neispravnosti karakterizira relativno povećanje odziva na frekvencijama viših harmonika frekvencije mehaničke brzine vrtnje u odnosu na osnovnu frekvenciju na kojoj može doći i do smanjenja odziva, što sugerira prijelaz iz dinamičke ekscentričnosti u statičku. Visok intenzitet odziva na četvrtom harmoniku sugerira nekorektnost tolerancija dosjeda ležaja i kućišta. Konačni stadij neispravnosti karakteriziran je visokim odzivima na parcijalnim višim harmonicima frekvencije mehaničke brzine vrtnje (npr. 1/2, 1/3, 11/2, 21/2). [7]

- Olabavljen vijčani spoj kućišta s temeljem

Ova vrsta neispravnosti rezultira kontinuiranim podizanjem i spuštanjem spojnog ruba kućišta. Opisana dinamika kućišta uzrokuje dinamičku ekscentričnost osi simetrije statorskog paketa u odnosu na rotor, frekvencija sile pobude jednaka je frekvencijama silama pobude navedenih nepravilnosti koje uzrokuje, odnosno izrazima (3.24) i (3.25). Prateća pojava sile pobude uslijed distorzije magnetskog polja javlja se na frekvenciji prema izrazu (3.26). Uobičajeno je prvo otkloniti sumnju u neuravnoteženost mase rotora provođenjem centriranja rotora, ako ni nakon toga ne dolazi do snižavanja vrijednosti odziva preporučuje se pritezanje vijčanog spoja kućišta motora s temeljem paralelno uz nadzor vibracija. [7]

- Nepotpuno podmazivanje valjnih ležajeva

Valjni ležajevi elektromotornih pogona uobičajeno se podmazuju litijevim mastima na bazi mineralnog ulja. Na stvaranje dostatnog sloja maziva utječu sljedeći faktori: karakteristike maziva, količina maziva koja se utiskuje i vremenski interval između podmazivanja, izvedba ležaja, kućišta ležaja i pripadajuće tolerancije spoja ležaja s kućištem, brzina vrtnje, temperatura ležaja, stanje brtvi, te čistoća podmazivanih površina. Podmazivanje valjnog ležaja mazivom masti prikazano je *Slikom 3.3.* [20]

Slika 3.3 Podmazivanje valjnog ležaja mazivom masti

Evaluacija debljine sloja mazive masti pri ustaljenom radu pogona zahtjevnija je nego što je to u slučaju podmazivanja uljem. Nedostatan sloj maziva uzduž vanjske i unutarnje staze prstena ležaja rezultira izostankom potrebnog tlaka za ostvarenje elasto-hidrodinamičkog podmazivanja. Posljedično dolazi do izravnog kontakta između valjnih elemenata i staza ležaja, periodičnost i položaj kontakta variraju zavisno o kompleksnom obrascu promjene debljine sloja maziva kroz kutni položaj na stazama prstena. Shodno opisanom frekvencija sile pobude će u tom slučaju biti varijabilnog iznosa, no rezultati istraživanja prema literaturi [21] pokazali su da se odziv ubrzanja na tu pobudu manifestira takozvanim efektom plasta sijena (en. *Haystack effect*) na frekvencijskom intervalu 2000 Hz - 12000 Hz. Pretpostavlja se da je razlog koji dovodi do opisanog efekta poklapanje promjenjive frekvencije sile pobude s nekom od prigušenih prirodnih frekvencija dijelova ležaja, što sugerira da uzrok ovog efekta uz nedostatno podmazivanje može biti i postojeće oštećenje dijela ležaja ili nekorektnost tolerancija dosjeda ležaja. [21]

Primjer efekta plasta sijena na intervalu 2000 Hz - 3500 Hz frekvencijske domene odziva ubrzanja vibracija prikazan je *Slikom 3.4.* [21]

Slika 3.4 Primjer manifestacije efekta plasta sijena u frekvencijskoj domeni

Utjecaj efekta plasta sijena u nekim se slučajevima može smanjiti domazivanjem ležaja, dok je ponekad potrebno promijeniti vrstu maziva ili tip konstrukcijske izvedbe ležaja kao što će se pokazati kroz praktični dio ovog rada. U slučaju nepoduzimanja korektivnih mjera opisani utjecaj nepovoljne raspodjele sloja masti može uzrokovati prekomjerno zagrijavanje i daljnje narušavanje stanja ispravnosti ležaja. Preciznija slika utjecaja efekta plašta sijena još uvijek nije potpuno definirana. Mogući razlog tome je činjenica da je određen višestrukim faktorima i njihovom međuzavisnosti. [21]

- Rezonancija

Do pojave rezonancije dolazi kad se brzina vrtnje rotora poklapa s nekom od prigušenih prirodnih frekvencija konstrukcijskog elementa dinamičkog sustava kaveznog motora. Električni strojevi se općenito projektiraju tako da se geometrijskom izvedbom i izvedbom sustava prigušenja prigušene prirodne frekvencije sustava udalje od frekvencija sila pobude. Frekvencije sila pobude za koje se sustav projektira su one koje nastaju ispravnim radom sustava kako u tranzijentnom, tako i u ustaljenom stanju. Vrlo važnu ulogu za sprječavanje rezonancije ima utemeljenje sustava. Prigušena prirodna frekvencija utemeljenja trebala bi se poklapati s prigušenom prirodnom frekvencije u fazi prenijele kroz temelje stroja u tlo. Na taj način izbjegava se odbijanje vibracija natrag prema stroju. Nepravilna izvedba utemeljenja i oslabljeni spojevi kućišta stroja neki su od najčešćih uzroka rezonancije. Pojava rezonancije najlakše se utvrđuje pri tranzijentnom stanju pokretanja stroja uslijed promjenjive frekvencije pobude. [7] [19]

- Specifične sile pobude elektromotornih pogona centrifugalnih crpki

Za elektromotorne pogone centrifugalnih crpki uz već navedene sile pobude karakteristične za neispravnosti kaveznih motora općenito, karakteristične su i specifične pobude vezane uz centrifugalnu crpku kao radni stroj. Pri dinamičkom opterećenju lopatica centrifugalne crpke frekvencija sile pobude bit će jednaka frekvenciji prolaza lopatica f_{pl} , Hz definiranoj izrazom (3.32) [7]:

$$f_{\rm pl} = N_{\rm L} \cdot \frac{n}{60} \tag{3.32}$$

Pri čemu je:

N_L - Broj lopatica pojedinog stupnja rotora centrifugalne crpke

Uzrok prethodno spomenute sile pobude su gradijenti tlaka često uzrokovani olabavljenim spojem rotora s vratilom ili pojavom kavitacije. Kavitacija nastaje uslijed stvaranja podtlaka pri usisu dovoljnog za isparavanje vode kao radnog medija i stvaranja mjehura vodene pare. Pri izlasku mjehura iz područja podtlaka dolazi do njegovog pucanja koje može uzrokovati oštećenja lopatica i kućišta. Dinamička pobuda lopatica dovodi do asimetričnog opterećenja motora, te može uzrokovati dodatne pobude uslijed dinamičke ili statičke ekscentričnosti rotora kaveznog motora. Frekvencije sila pobude uslijed navedenih neispravnosti već su dane izrazima (3.23) i (3.24). [7] [19]

3.2 Toplina

Povezanost električne i toplinske energije već je ranije u ovom radu kroz potpoglavlje 2.3 iskazana uzimanjem u obzir Jouleove gubitke (3.33): [9]

$$Q_{jq} = I^2 \cdot R \tag{3.33}$$

Povezanost mehaničke i toplinske energije iskazana je u zavisnosti o iznosu sile trenja preko izraza (3.34):

$$Q_{\rm tr} = \Gamma \cdot F_{\rm tr} \cdot v_{\rm tr} \tag{3.34}$$

 Γ - Koeficijent pretvorbe trenja u toplinsku energiju

*F*_{tr} - Sila trenja, N

vtr - Brzina gibanja pri trenju, m/s

Uzimajući u obzir navedene povezanosti toplinske energije s oblicima energije između kojih se odvije pretvorba unutar kaveznog motora, nije neobično da se toplina uz vibracije smatra jednim od pokazatelja neispravnog rada motora. Prekomjerna se toplina oslobađa uslijed sljedećih neispravnosti: kratkospojeni statorski namoti, oštećeni ili loše podmazani ležajevi, oštećenja rotorskih štapova, te dinamičke i statičke ekscentričnosti rotora koje dovode do asimetrije elektromagnetskih prilika. Loše podmazivani i oštećeni ležajevi uzrokovat će veće trenje, dok će oštećenja namota i asimetrija elektromagnetskih prilika dovesti do povećanih struja. Uzrok pretjeranog zagrijavanja može biti i rad stroja pri neusklađenosti operativnih parametara s podacima na natpisnoj pločici, te projektiranim karakteristikama stroja. Vrlo je važno temperaturu kaveznog motora zadržati u granicama propisanim razredom izolacija i faktorom pogona. [4]

3.3 Električne veličine

Kontrola parametara vibracija i temperature općenito se provodi na različitim vrstama strojeva ne samo električnim. Važni pokazatelji stanja električnih strojeva su karakteristike električnih veličina: struja i napona statora, te rasipno magnetsko polje mjereno na kućištu motora. Kao što je već ranije kroz ovo poglavlje navedeno velik broj različitih vrsta mehaničkih oštećenja konstruktivnih elemenata kaveznog motora dovodi do asimetrije elektromagnetskih prilika u zračnom rasporu između statora i rotora. Distorzija okretnog magnetskog polja neispravnost je elektromehaničke prirode, te se stoga njen utjecaj odražava i na spomenute karakteristike električnih veličina. Te će veličine uslijed utjecaja asimetrije elektromagnetskih prilika imati izmijenjen frekvencijski spektar u odnosu na uobičajeni. Razlog tome je utjecaj modalnog doprinosa harmonika karakterističnog za određenu vrstu neispravnosti. [2][4][6]

Nadzori električnih veličina u sklopu strategije održavanja po stanju neće biti obrađeni u sklopu ovog rada.

4. NADZOR ASINKRONOG ELEKTROMOTORNOG POGONA

Općenito se nadzor stanja strojeva i dijagnosticiranje ispravnosti na temelju istog može definirati kao područje tehničkih aktivnosti kroz koje se nadzire odabrani fizikalni parametar povezan s fizikalnom slikom stroja u cilju evaluacije stanja ispravnost stroja. [7]

Glavnu podjela nadzora stanja strojeva vrši se po kontinuitetu nadzora na: [7]

- Kontinuirani: iziskuje izrazito velike izdatke početne investicije nabave i ugradnje sustava nadzora, koristi se uobičajeno kod izrazito skupe opreme čiji zastoj uzrokuje velike troškove. Često je to oprema koja koristi nove tehnologije i za koju ne postoji baza podataka prošlih neispravnosti.
- Periodički: Često se koristi u varijantama toplinskog i vibracijskog nadzora, početna investicija u dijagnostičku opremu znatno je manja. Kod ove vrste nadzora izrazito je važno frekvenciju provođenja nadzora prilagoditi aktualnom stanju stroja. [6][7]

Sukladno navedenom u uvodu ovog rada motivacija za implementaciju nadzora strojeva i radne opreme općenito kao ključne aktivnosti strategije održavanja po stanju je postizanje što veće raspoloživosti i pouzdanosti pogona sukladno *Slici 4.1.* [7]

Slika 4.1 Grafički prikaz načela strategije održavanja po stanju

Blok shema aktivnosti strategije održavanja po stanju prikazana je Slikom 4.2. [2]

Slika 4.2 Blok shema glavnih aktivnosti strategije održavanja po stanju

Iz Slike 4.2 vidljivo je da se analizom obrađenih podataka mjerenja kontroliranih parametara provodi evaluacija stanja ispravnosti stroja. Na temelju utvrđenog stanja planiraju se aktivnosti održavanja tako da se provode isključivo zahvati nužni za održavanje ispravnog stanja stroja, kako bi uz postojanost pouzdanosti njegova raspoloživost bila što veća.

Negativne strane uvođenja strategije održavanja po stanju mogu se razmatrati kroz relativno visoke troškove nabave dijagnostičke opreme i edukacije djelatnika. Također, ušteda ostvarena ovom strategijom ne dolazi do izražaja u ekonomskim analizama koje menadžment uobičajeno provodi. Postojanost potpune podrške menadžmenta pri implementaciji strategije održavanja po stanju uvelike određuje njezinu uspješnost. [7]

4.1 Vibracijski nadzor

Vibracijski nadzor je vrsta nadzora s vrlo dugom tradicijom i milijunskim bazama podataka, te velikom količinom literature koja mu je posvećena. Zbog toga se smatra temeljem za ostale vrste nadzora, bez obzira na to njegova kontinuirana samostalna primjena često nije dovoljna za pouzdano održavanje stanja ispravnosti pogona. [6]

Fokus ovog potpoglavlja je na periodičkom vibracijskom nadzoru, s obzirom na to da se ta vrsta vibracijskog nadzora primjenjuje u praktičnom djelu rada. Tijek periodičnog vibracijskog nadzora elektromotornog pogona prikazan je *Slikom 4.3.* [19]

Slika 4.3 Tijek periodičnog vibracijskog nadzora

Iz *Slike 4.3* vidljivo je da se vibracije u senzoru pretvaraju u električne veličine koje se potom očitavaju kao signal u vanjskoj jedinici za obradu signala. Vanjska jedinica provodi filtriranje i daljnje postupke obrade signala zaprimljenog iz senzora u pogodnije vrste prikaza. Obrađeni podaci mjerenja se potom prenose na računalo, kako bi se provela analiza. Analizom se podaci mjerenja uspoređuju prvenstveno s podacima mjerenja dobivenim prethodno provedenim periodičkim nadzorima, ali i s referentnim standardima. [6]

Položaji postavljanja senzora za mjerenje vibracija propisani su standardima: DIN 2056/ VDI 2056, DIN/ISO 10816-3, te najnovijim DIN/ISO 20816-3. Isti su prikazani oznakama V1, V2, V3 i V4 *Slikom 4.4* na primjeru elektromotornog pogona centrifugalne crpke. [6]

Slika 4.4 Položaji mjerenja vibracija u sustavu elektromotornog pogona

Sukladno prikazanom na *Slici 4.4* mjere se vibracije na položajima kućišta u neposrednoj blizini ležajeva u aksijalnom smjeru A određenom osi Y, te radijalne smjerove V i H određenih osima Z i X. Referentna mjerna veličina za maksimalno dopušten iznos vibracija je efektivna vrijednost brzine vibriranja (eng. *Root mean square (RMS) velocity)* v_{RMS} , mm/s. Maksimalno dopuštene vrijednosti efektivne brzine vibriranja v_{RMS} , mm/s propisane su ranije navedenim standardima za četiri grupe strojeva snage veće od 15 kW: [22]

- Grupa 1: Veliki strojevi nazivne snage preko 300 kW i električni strojevi s visinom osi $H \ge 315 \text{ mm}$

- Grupa 2: Strojevi srednje veličine nazivne snage veće od 15 kW i manje od 300 kW, električni strojevi s visinom osi 160 mm $\leq H < 315$ mm

- Grupa 3: Centrifugalne, aksijalne i dijagonalne crpke nazivne snage iznad 15 kW s odvojenim pogonskim strojem

- Grupa 4: Centrifugalne, aksijalne i dijagonalne crpke nazivne snage iznad 15 kW s integriranim pogonskim strojem

Za svaku grupu strojeva zasebno su propisane maksimalno dopuštene efektivne brzine vibriranja za kruto i fleksibilno utemeljenje. Krutim utemeljenjem smatra se izvedba utemeljenja dinamičkog sustava pogona kojom se temeljna prigušena prirodna frekvencija sustava f_0 , Hz povisuje za barem 25% u odnosu na glavnu frekvenciju pobude jednakoj frekvenciji mehaničke brzine vrtnje definiranu izrazom (3.24). Sve ostale izvedbe utemeljenja smatraju se fleksibilnim utemeljenjem. Elektromotorni pogoni većih i srednjih snaga uobičajeno se izvode s krutim utemeljenjem, pa su maksimalno dopuštene vrijednosti efektivne brzine vibriranja v_{RMS} , mm/s za kruto utemeljene grupe strojeva 1, 2 i 3 referentne za praktični dio rada opisan u sljedećem poglavlju. [22] Tablični prikaz maksimalno dopuštenih vrijednosti efektivne brzine vibriranja v_{RMS} , mm/s i y_{RMS} , μ m za grupe strojeva 1 i 3 prema ISO 10816 - 3 dan je *Tablicom 4.1*, dok je za grupu strojeva 2 dan *Tablicom 4.2.* [22]

Tablica 4.1 Maksimalno dopuštene vrijednosti vibracija za grupe strojeva 1 i 3

Vrsta utemeljenja	Granica područja	Efektivni pomak µm	Efektivna brzina mm/s
de anticipation de la construcción de la construcci	A/B	29	2,3
Kruto	B/C	57	4,5
	C/D	90	7,1
	A/B	45	3,5
Fleksibilno	B/C	90	7,1
	C/D	140	11,0

Tablica 4.2 Maksimalno dopuštene vrijednosti vibracija za grupu strojeva 2

Vrsta utemeljenja	Granica područja	Efektivni pomak μm	Efektivna brzina mm/s
	A/B	22	1,4
Kruto	B/C	45	2,8
	C/D	71	4,5
	A/B	37	2,3
Fleksibilno	B/C	71	4,5
	C/D	113	7,1

Područja stanja ispravnosti definirana maksimalno dopuštenim vrijednostima iz *Tablice 4.2* definirana su kao: [22]

- Područje A: Područje u koje spadaju novi strojevi najviše razine ispravnosti
- Područje B: Strojevi s vrijednostima vibracija u ovom području smatraju se pogodnima za kontinuirani rad
- Područje C: Strojevi s vrijednostima vibracija u ovom području ne smatraju se pogodnima za kontinuirani pouzdan rad, preporučuje se planiranje pripadajućih aktivnosti održavanja prvom sljedećom prilikom.
- Područje D: Strojevi s vrijednostima vibracija u ovom području smatraju se neispravnima u toj mjeri da postoji rizik od havarije stroja i pogonskog sustava u cjelini. Preporučuje se zaustavljanje stroja i žurno poduzimanje daljnjih aktivnosti za poboljšanje stanja.

Standard ISO 10816 - 3 propisuje sljedeće smjernice za provođenje periodičnog vibracijskog nadzora pogona: [22]

- Mjerenje vibracija provesti u ustaljenom radu pogona pri nazivnim opterećenjima.
- Mjerenje vibracija vršiti senzorom pogodnim za mjerenje širokog pojasa efektivnih vrijednosti vibracija na minimalnom intervalu 10 Hz do 1000 Hz, odnosno s ravnim odzivom na tom intervalu frekvencija pobude. Pri mjerenju vibracija na strojevima s brojem okretaja manjim od 600 min⁻¹odabrati senzor s donjom granicom ravnog odziva na frekvenciji pobude ne većoj od 2 Hz.
- Na mjerenja vibracija ne bi ni na koji način trebale utjecati dinamičke pobude neposredne okoline: utjecaji zvučnih i magnetskih polja, temperature, varijacije električne energije napajanja, orijentacija senzora i duljina njegovog kabela.
- Posebnu pažnju pri montaži senzora na kućište stroja nužno je obratiti na stanje površine prianjanja senzora, te prikladan način prihvata senzora na kućište.
- Kad su izmjerene vrijednosti vibracija stroja veće od maksimalno dopuštenih, u slučaju sumnje nužno je procijeniti značaj utjecaja vanjskih pobuda, mjerenjem vibracija na stroju izvan pogona.
- Na kućištima ležajeva pogonskog i pogonjenog stroja provesti mjerenja vibracija u radijalnim smjerovima H i V sukladno *Slici 4.5.* [22] Iznimno se po potrebi mjerenje provodi u aksijalnom smjeru A.

Slika 4.5 Smjerovi postavljanja senzora vibracija na položajima mjerenja

4.1.1 Senzori za mjerenje vibracija i instrumenti za obradu signala

Senzori su uređaji koji detektiraju fizikalnu veličinu i pretvaraju je u izlazni električni izlazni signal proporcionalan detektiranoj veličini. [7]

Prikupljanje podataka mjerenja vibracija vrši se s pomoću senzora koje možemo s obzirom na fizikalnu veličinu gibanja koju mjere podijeliti na: [7]

- Senzore pomaka
- Senzore brzine
- Senzore akceleracije

Beskontaktni senzori pomaka su senzori koji zavisno o izvedbi rade na principu međuindukcije ili vrtložnih struja. Često se primjenjuju za mjerenje vibracija kliznih i potisnih ležajeva, gdje točno mjerenje vibracija kontaktnim senzorima brzine i akceleracije nije moguće. Linearnost i osjetljivost mjerenja uvelike ovisi o provodljivosti i poroznosti površine mjerenja. Potreba za krutom montažom senzora posredstvom vijčanog spoja čini mjerenje ovim senzorom vremenski zahtjevnim. [7]

Senzori brzine zavisno o izvedbi imaju elektromehanički ili piezoelektrični princip rada. Senzori brzine koji rade na elektromehaničkom principu sastoje se od permanentnog magneta oslonjenog na opruge. [7][17] Dodatna podjela izvedbi elektromehaničkog senzora brzine može se provesti na senzore s pomičnim permanentnim magnetom i senzore s pomičnim svitkom sukladno *Slici 4.6.* [17]

Slika 4.6 Različite izvedbe senzora brzine vibriranja

Tehnički fakultet Sveučilišta Jurja Dobrile u Puli

Relativna brzina gibanja permanentnog magneta u odnosu na pomični dio postavljen na vibrirajuću površinu proporcionalna je sili koja djeluje na njega. Inducirana struja protječe kroz svitak uslijed induciranog napona određenog izrazom (4.2): [17]

$$U_{\rm sv} = B \cdot I_{\rm sv} \cdot v_{\rm rel} \tag{4.2}$$

Pri čemu je:

B - Magnetska indukcija, T

*I*_{sv} - Duljina svitka, m

 $v_{\rm rel}$ - Relativna brzina gibanja pomičnog dijela senzora uslijed vibriranja, m/s

Pri mjerenju vibracija ovom vrstom senzora važno je obratiti pažnju na orijentaciju senzora zbog utjecaja gravitacijske sile i kompatibilnosti izvedbe mehanizma za montažu. [7][17]

Rijetko se primjenjuju za periodički nadzor vibracija električnih strojeva zbog ograničenja odziva na visoke frekvencije, te niže pouzdanosti zbog pokretnih dijelova i velike temperaturne osjetljivosti fluida prigušnog elementa. Za dobivanje mjerenja efektivne brzine vibriranja $v_{\rm RMS}$, mm/s uobičajeno se koristi piezoelektrični senzor brzine, odnosno akcelerometar s ugrađenim integratorom. [7]

Senzori akceleracije su kontaktni senzori najčešće korišteni za periodički nadzor vibracija električnih strojeva. Jedna od izvedbi ove vrste senzora vibracija je mehanički akcelerometar prikazan *Slikom 4.7.* [7]

Slika 4.7 Izvedba mehaničkog akcelerometra

Uz prikazanu mehaničku izvedbu moguća je i poluvodička izvedba.

Njihov opći princip rada temelji se na piezoelektričnom efektu: piezoelektrični kristalni element podvrgnut naprezanju uslijed vibriranja emitira napon U_{sa} , V jednak izrazu (4.3): [17]

$$U_{\rm sa} = \frac{S_{\rm q} \cdot F}{C} \tag{4.3}$$

Gdje je:

S_q - Nabojna osjetljivost, pC/N

F - Vanjska sila, N

C - Ekvivalentni kapacitet, µF

Iz Drugog Newtonovog zakona poznato je da vanjska sila F, N ubrzava masu m, kg akceleracijom a, m/s². Shodno tome akceleracija se lako izražava preko ostala dva člana sukladno izrazu (4.4): [17]

$$a = \frac{F}{m} \tag{4.4}$$

Linearna zavisnost napona induciranog piezoelektričnim efektom U_{sa} , V o iznosu vanjske sile *F*, N dana izrazom (4.3) omogućuje u kombinaciji s izrazom (4.4) iskazivanje akceleracije uslijed vibriranja *a*, m/s² kao konačnog parametra mjerenja u zavisnosti o induciranom naponu sukladno izrazu (4.5):

$$a = \frac{U_{\rm sa} \cdot C}{S_{\rm q} \cdot m} \tag{4.5}$$

Nabojna osjetljivost S_q , pC/N je stoga važna karakteristika akcelerometra koja zavisi o vrsti piezoelektričnog materijala kao što je to prikazano *Tablicom 4.3.* [7]

Piezoelektrični materijal	S _q , _{pC/N}
Barijev titanat BaTiO3	110
Olovo cirkonat titanat PZT	140
Kvartz	2,5
Rochelleova sol	275

Tablica 4.3 Nabojne osjetljivosti različitih vrsta piezoelektričnih materijala

Naponska osjetljivost S_v , mV · s²/m ili mV· m/N karakteristika je povezana s nabojnom osjetljivosti S_q , pC/N preko dielektrične konstante k_{di} , F/m materijala i određuje zavisnost jačine signala o intenzitetu vibracija. Često se iskazuje uvrštavanjem konstante $g = 9,81 \text{ m/s}^2$ u mjernu jedinicu: mV/g.

Akcelerometre općenito karakterizira vrlo širok radni frekvencijski pojas: 0,5 Hz – 20 kHz. Integracijom se lako dobivaju veličine pomaka i brzine, a robusnost izvedbe uz izostanak pokretnih dijelova osigurava visoku pouzdanost. Uz to relativno su otporni na promjene temperature, ali su zato osjetljivi na promjenu vlage. Mogući su različiti načini pričvršćivanja akcelerometra na površinu vibriranja: vijčanim spojem, magnetskim držačem ili ručnim držanjem. Ručno držanje se u pravilu ne koristi pri vibracijskom nadzoru zbog izrazite nepreciznosti mjerenja na nešto širem frekvencijskom pojasu. Pričvršćivanje senzora vijčanim spojem pruža preciznost mjerenja na najširem frekvencijskom pojasu, ali je za periodički nadzor izrazito nepraktično i vremenski zahtjevno. Optimalno rješenje u većini slučajeva je

pričvršćivanje akcelerometra magnetskim držačem; preciznost mjerenja u radnom frekvencijskom pojasu do 10 kHz zadovoljavajuća je, a pričvršćivanje i skidanje senzora obavlja se vrlo brzo. [7]

Piezoelektrični senzor ubrzanja moguće je prikazati ekvivalentnim krugom na Slici 4.8. [7]

Slika 4.8 Ekvivalentni krug piezoelektričnog senzora ubrzanja

Izvor naboja q, pC predstavlja element izrađen iz piezoelektričnog materijala. Zbog dielektričnosti materijala, senzor ima ekvivalentni kapacitet *C*, μ F za pohranu naboja. Slijedom toga moguće je impedanciju piezoelektričnog senzora ubrzanja *Z*, Ω definirati izrazom za impedanciju kondenzatora (4.6):

$$Z = \frac{1}{j \,\omega_{\rm mv} \,\cdot\, C} \tag{4.6}$$

Pri čemu je:

 $\omega_{\rm mv}$ - Kružna frekvencija mjerenih vibracija, rad/s

Iz gornjeg izraza očit je problem visoke impedancije pri mjerenju vibracija relativno niskih frekvencija. Primjerice, pri mjerenju vibracija frekvencije 100 Hz izlazna impedancija akcelerometra iznosit će približno nekoliko MΩ. Shodno tome nužno je izlazni signal senzora provesti kroz pojačalo prije daljnje obrade signala, to se uobičajeno provodi na ulazu u vanjsku jedinicu za obradu signala. Ekvivalentni krug piezoelektričnog senzora spojenog na pojačalo prikazano je *Slikom 4.9*. [7]

Slika 4.9 Ekvivalentni krug piezoelektričnog senzora spojenog na pojačalo Pri čemu su novouvedene veličine na Slici 4.9:

- K Faktor pojačanja
- $C_{\rm c}$ Kapacitet kabela, µF
- $C_{\rm f}$ Kapacitet povratne veze, μF
- R_f Električni otpor povratne veze, Ω
- U_o Izlazni napon signala, mV

Jedinicu pojačala odlikuju karakteristike visoke ulazne i niske izlazne impedancije. Stabilnost iznosa napona signala na izlazu iz pojačala u zavisnosti o frekvenciji ostvaruje se negativnom povratnom vezom ostvarenom paralelnim spojem kondenzatora i otpornika. [7] Vanjske jedinice za obradu signala su uređaji u kojima se provode analogni i digitalni postupci obrade signala. Raspon mogućnosti modernih uređaja razlikuju se, ali sljedeći postupci obrade signala su im zajednički: [7]

- Pojačalo naboja
- Nisko-propusni analogni filter za otklanjanje prekrivanja (en. Antialiasing)
- Analogno-digitalna pretvorba
- Brza Fourierova transformacija
- Demodulacija (envelopiranje)

4.1.2 Vrste prikaza rezultata mjerenja

Obradom signala dobivaju se, odnosno moguće su sljedeće vrste prikaza rezultata mjerenja vibracija:

- Vremenska domena
- Frekvencijska domena
- Spektar envelope
- Kaskadni prikaz

Vremenska domena najosnovniji je prikaz uzorkovanog signala, rijetko se koristi za dijagnosticiranje neispravnosti zbog činjenice da je amplituda i frekvencija konačnog odziva posljedica superpozicije velikog broja modalnih komponenata. [6]

Odziv u spektru frekvencijske domene rezultat je provedbe brze Fourierove transformacije - FFT (en. *Fast Fourier transformation*). Temeljni je oblik izlaznog rezultata mjerenja vibracija u sklopu periodičkog nadzora. Za razliku od vremenske domene u ovoj se domeni lako razabiru modalni doprinosi vibracija na pojedinim frekvencijama ukupnom odzivu, te je na temelju toga moguća usporedba amplituda efektivne brzine vibriranja s referentnim vrijednostima i usporedba frekvencija vibracija značajnijih amplituda s frekvencijama pobude predstavljenim u četvrtom poglavlju. [6][7]

Primjer prikaza odziva efektivne brzine vibriranja ležaja u frekvencijskoj domeni na pogonskoj strani (AS) elektromotora i strani nasuprot pogonske (GS) dan je *Slikom 4.10.* [6]

Slika 4.10 Frekvencijski spektar odziva efektivne brzine vibriranja ležajeva

Prikaz spektra envelope, odnosno demoduliranog spektra omogućuje prepoznavanje kumulativnog modalnog doprinosa amplituda efektivnog ubrzanja viših harmonika karakterističnih frekvencija pobuda, što je posebno pogodno za rano uočavanje doprinosa odziva na višim harmonicima frekvencija oštećenja ležajeva. Te su frekvencije u običnim frekvencijskim spektrima često zasjenjene dominantnim odzivima na osnovnim harmonicima frekvencija različitih vrsta oštećenja. Frekvencijski spektar envelope valjnog ležaja s granicama filtra na 500 Hz i 10000 Hz prikazan je *Slikom 4.11.* [23]

Slika 4.11 Spektar envelope s granicama filtra na 500 Hz i 10000 Hz

Tehnički fakultet Sveučilišta Jurja Dobrile u Puli

Iz Slike 4.11 vidljiv je kumulativan odziv efektivnog ubrzanja vibracija na frekvencijama viših harmonika karakteristične frekvencije pobude uslijed oštećenja valjnog elementa u iznosu od 95 Hz. Konkretno riječ je o doprinosima odziva na frekvencijama od 6. do 105. harmonika: 570 Hz, 665 Hz, ..., 9880 Hz, 9975 Hz. Sukladno tom algoritmu, dio spomenutog kumulativnog odziva bit će iskazan i preko devet viših harmonika te frekvencije u spektru 0 - 1000 Hz. Tako će primjerice za frekvenciju drugog harmonika 190 Hz biti obuhvaćeni doprinosi odziva na frekvencijama: 570 Hz, 760 Hz, ...,9690 Hz, 9880 Hz. Temeljni frekvencijski spektar odziva efektivne brzine vibracija poput onog prikazanog Slikom 4.10 ne ukazuje na značaj odziva na pobudu frekvencije osnovnog harmonika 95 Hz zbog utjecaja dominantnih temeljnih frekvencija pobude u okolnom području. Kako bi postupak opisani postupak demodulacije bio ispravan, važno je ispravno odabrati granicu visokopropusnog filtra tako da ona bude viša od najviše temeljne frekvencije pobude uslijed neke od neispravnosti navedene kroz potpoglavlje 3.2. Granica niskopropusnog filtra najčešće se postavlja na vrijednost 10000 Hz kao konačne vrijednosti frekvencijskog spektra efektivnog ubrzanja. [23]

Kaskadni prikaz (en. *Waterfall display*) podrazumijeva prikaz odziva efektivne brzine vibriranja, efektivnog ubrzanja vibriranja ili spektra envelope za različita vremenska razdoblja. Ovaj način prikaza pogodan je za praćenje tranzijentnog stanja pri pokretanju pogona ili praćenje trendova u odnosu na prethodno provedene periodičke nadzore istog elektromotornog pogona. Kao što je ranije navedeno uvodom u periodički vibracijski nadzor, usporedba s podacima mjerenja prethodno provedenih nadzora vrlo je važna za uočavanje trendova stanja pojedinog pogona. Preporučuje se stoga periodički vibracijski nadzor provesti odmah pri prvom puštanju u pogon, rezultati prvog nadzora nakon puštanja u pogon nazivaju se potpisni spektar. Potpisni spektar referentni je spektar svojstven za pojedini novi stroj pušten u pogon, te se kaskadnim prikazom rezultata daljnjih nadzora u odnosu na potpisni spektar lako uočavaju trendovi neispravnosti uslijed degradacije ili zamjene pojedinih elemenata pogona. Kaskadni prikaz stroja pri pokretanju prikazan je *Slikom 4.12.* [7]

Slika 4.12 Kaskadni prikaz frekvencijskog spektra odziva vibracija pri pokretanju elektromotornog pogona

4.2 Toplinski nadzor

Kroz potpoglavlje 3.2 definirane su fizikalne slike nastajanja toplinske energije u sustavu elektromotornog pogona. Kroz potpoglavlje 2.3 definirana je maksimalna temperatura statorskih namota za različite razrede toplinske izolacije pri čemu je napomenuto da se mjerenje vrši ugrađenim temperaturnim senzorima. Toplinski nadzor je stoga važna vrsta nadzora i često se u kombinaciji s vibracijskim nadzorom koristi za pouzdano i pravovremeno dijagnosticiranje neispravnosti, ali i za izvođenje sustava zaštite od preopterećenja. Daljnja podjela toplinskog nadzora može se provesti s obzirom na kontinuitet i lokalitet mjerenja temperature na: [6][21]

- Kontinuirani nadzor lokaliziranim mjerenjem temperature posredstvom ugrađenih kontaktnih senzora temperature
- Periodički nadzor globalnim mjerenjem temperature sustava s pomoću termovizijske kamere

4.2.1 Nadzor topline s pomoću kontaktnih senzora temperature

Kontaktni senzori temperature primjenjivani za kontinuirani lokalni nadzor elemenata elektromotornih pogona s asinkronim motorima mogu se s obzirom na princip rada podijeliti na: [24][23]

- Bimetale princip toplinsko-električnih svojstava dvaju različitih sparenih metala
- Termootpornike princip linearne promjene otpora vodiča uslijed promjene temperature
- Termistore otpornike s pozitivnim ili negativnim toplinskim koeficijentom

Prednosti i nedostaci pojedine kontaktnih senzora temperature prikazani su Tablicom 4.4. [24]

Tablica 4.4 Prednosti i nedostaci kontaktnih senzora temperature

Kontinuirani nadzor topline elemenata kaveznih motora srednjih i većih snaga najčešće se ostvaruje ugradnjom Pt 100 sondi. [23] Pt-100 sonde su vrsta termootpornika izrađenog od platinaste žice omotane oko jezgre izrađene iz stakla ili keramike, primjer Pt - 100 sonde prikazan je *Slikom 4.13.* [24]

Slika 4.13 Primjer izvedbe Pt - 100 Sonde

Ovu izvedbu termootpornika karakterizira otpor u iznosu od 100 Ω na temperaturi od 0 °C, potpuna zavisnost otpora o temperaturi za interval od - 200 °C do 800 °C prikazana je *Slikom 4.14.* [24]

Slika 4.14 Zavisnost otpora o temperaturi Pt - 100 sonde

Osnovni strujni krug Pt-100 sondi prikazan je Slikom 4.15. [6]

Slika 4.15 Osnovni strujni krug Pt - 100 sonde

Uobičajeno se zbog kompenzacije u cilju postizanja što linearnijeg odziva Pt -100 sonda izvodi s tri platinasta vodiča i digitalnom linearizacijom kao što je to prikazano *Slikom 4.16.* [24]

Slika 4.16 Digitalna linearizacija pri mjerenju temperature Pt-100 sondom

Osim što pruža kontinuirani precizan uvid u temperaturu namotaja i ležajeva elektromotornog pogona ova vrsta kontaktnih senzora temperature omogućuje zaštitu od preopterećenja spajanjem na programabilne logičke kontrolere (eng. *Programmable Logic Controller (PLC)*) koji pri određenoj lokalnoj temperaturi pojedinog elementa prekidaju napajanje kaveznog motora.

4.2.2 Nadzor topline s pomoću termografije

Nerazorna metoda dijagnostike koja kao parametar stanja stroja ili uređaja mjeri toplinsko zračenje, određujući pritom temperaturu površine tijela. Senzor kamere pretvara elektromagnetske valove toplinskog zračenja infracrvenog područja u napon, na temelju kojeg se procesuiranjem dobiva kontura temperature i/ili gradijenta temperature. Najčešće se radi o periodičkom nadzoru prekomjernog zagrijavanja kućišta u blizini kritičnih elemenata pogona, koje ukazuje na postojanje nepravilnosti. Metoda ima prednost brzog i fleksibilnog mjerenja topline zračenja površine na razini cijelog sklopa, nedostatak je utjecaj toplinskog zračenja okoline i prepreka između izvora topline i leće kamere kao što je to primjerice kućište stroja. Osim navedenog utvrđivanje porasta temperature na određenom dijelu zahtjeva daljnju istragu primjenom ostalih vrsta nadzora kako bi se potvrdila neispravnost i otkrio njen uzrok. [21][25][26]

Kamera se sastoji od kućišta, leća i mikrobolometra spojenog na upravljačku jedinicu za procesuiranje kao što je to prikazano *Slikom 4.17*. [26]

Slika 4.17 Blok shema termografske kamere

Mikrobolometar je specifična vrsta izrazito osjetljivog termootpornika kod kojeg dolazi do promjene otpora pri apsorpciji EM vala infracrvenog spektra valnih duljina 7 – 14 µm. Za razliku od senzora koji rade na principu fotoosjetljivih poluvodiča, mikrobolometar nema potrebu za rashladnom jedinicom.

Pri procesuiranju podataka mjerenja izmjereni se intenzitet toplinskog zračenja Q_z , W može izraziti preko temperature površine zračenja T_z , K primjenom Stefan-Boltzmannovog zakona sukladno izrazu (4.11): [25][26]

$$Q_{z} = \varepsilon \cdot \sigma \cdot A_{z} \cdot T_{z}^{4} \tag{4.11}$$

Pri čemu su varijable u izrazu (4.11):

- ε Koeficijent emisivnosti materijala površine zračenja
- Az Površina zračenja, m²
- $\sigma = 5,67 \cdot 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ Stefan-Boltzmannova konstanta

Primjer konture temperature kao izlaznog rezultata periodičkog nadzora kućišta termografijom prikazan je *Slikom 4.18.* [6]

Slika 4.18 Izlazni rezultat periodičkog nadzora turbogeneratora termografijom

Zahtjevi opreme za provođenje termografije: [25]

- Minimalna temperaturna razlučivost od 0.3 °C ili manje na temperaturi okoline od 20 °C
- Interval radnog spektra: 2 μm do 14 μm

Postupak periodičkog nadzora termografijom: [25]

- Kućišta električne i mehaničke opreme treba ukloniti prije nadzora ili kao referentnu temperaturu usporedbe koristiti temperaturu izmjerenu na kućištu
- U slučaju kvantitativnog nadzora osigurati adekvatnu razlučivost opreme

Pri kvantitativnom nadzoru vrijednosti temperatura (ΔT kriterij) uzeti u obzir sve faktore koji utječu na iznos temperature: emisivnost materijala, okolišni termodinamički uvjeti i veličina objekta promatranja. Kad god je to moguće nužno je usporediti rezultate mjerenja temperatura s povijesnim rezultatima mjerenja identičnim površina konstruktivnih elemenata strojeva ili uređaja pri ispravnom stanju pogona. [25]

U tom slučaju moguće je implementirati ΔT kriterij temeljen na iskustvu poput kriterija predloženog od strane Infraspection Instituta prikazanog *Tablicom 4.5.* [25]

Prioritet	Δ <i>T</i> , °C	Preporučena radnja
4	1 - 10 °C	Moguća nepravilnost, istražiti
3	11 - 20 °C	Vjerojatna nepravilnost, korektivne mjere provesti prvom prigodom
2	20 - 40 °C	Korektivne mjere provesti u što skorijem roku
1	> 40 °C	Veliko odstupanje, provesti korektivne mjere odmah

Tablica 4.5 Primjer iskustvenog ∆T kriterija

5. PERIODIČKI VIBRACIJSKI NADZOR CRPNIH STANICA

Praktični dio ovog rada ostvaren je u suradnji s tvrtkom Istarski vodovod Buzet d.o.o. u čijem su vlasništvu crpne stanice na kojima je proveden periodički vibracijski nadzor, te tvrtkom Kalmer d.o.o. Trbovlje kao vanjskog suradnika čiji su djelatnici u cijelosti proveli postupak nadzora uključujući mjerenja vibracija elektromotornih pogona i analizu podataka mjerenja, te naknadno balansiranje rotora jednog elektromotornog pogona. U sklopu ovog rada dodatno je provedena analiza i usporedba rezultata mjerenja s teorijom vibracija kao pokazatelja stanja elektromotornih pogona crpki objašnjenom kroz potpoglavlje 3.1.2.

U uvodnom dijelu napomenuto je da se periodički vibracijski nadzor provodi na crpnim stanicama Gradole i Sv. Stjepan. Crpna stanica Gradole nalazi se neposredno na izvoru, te se iz nje izvorska voda tlači u obližnje postrojenje za proizvodnju pitke vode. Crpna stanica Sv. Stjepan podiže proizvedenu pitku vodu u tlačni cjevovod iz kojeg se jednim krakom magistralnog cjevovoda po potrebi opskrbljuje cijelo područje sjeverozapadne Istre (Umag, Buje i Novigrad), dok se drugim krakom opskrbljuju dijelovi područja središnje Istre (Pazin, Žminj) i zapadne Istre (Rovinj, Vrsar i Poreč) sukladno miješanju distribucije prema ljetno - zimskom režimu pumpanja. [27]

Periodički nadzor vibracija elektromotornih pogona crpnih stanica vrši se neposredno prije turističke sezone u četvrtom ili petom mjesecu, te nakon kraja sezone u devetom ili desetom mjesecu. Razlog tome je period vršnog opterećenja crpnih stanica koji se poklapa s ljetnim periodom. Dodatno se termini nadzora u periodu između redovnih planiraju u slučajevima prethodno utvrđenih neispravnosti redovnim nadzorom, te nakon provedenih aktivnosti održavanja. Periodički vibracijski nadzor proveden 05.07.2023. ujedno i analiziran u sklopu ovog rada takve je prirode.

Tehnički opis crpnih stanica dan je u prvom potpoglavlju, primijenjene vrste instrumenata i standarda dane su kroz drugo potpoglavlje, kroz treće je potpoglavlje opisan postupak provođenja nadzora. U četvrtom je potpoglavlju dana analiza i interpretacija rezultata mjerenja uz konačan pregled stanja ispravnosti crpnih agregata, te aktivnosti održavanja koje iz istog slijede.

5.1 Tehnički opis crpnih stanica

Već je u uvodu petog poglavlja navedeno da je periodički nadzor vibracija proveden na dan 05.07.2023. analiziran kroz praktični dio ovog rada dodatan termin nadzora. Kao takav obuhvaća crpne agregate kojima su prethodno provedenim vibracijskim nadzorima po redovnom rasporedu utvrđene neispravnosti u razvoju ili nadzor nad istima u redovnom terminu nije mogao biti proveden. Sukladno teoriji iz potpoglavlja 4.1 frekvencija provođenja periodičkih vibracijskih nadzora prilagođena je utvrđenom stanju elektromotornih pogona. Tehničke karakteristike elektromotornih pogona crpki, odnosno crpnih agregata dobivene su očitavanjem natpisnih pločica prema postupku prikazanom u potpoglavlju 2.3.4. Crpni agregati koji su predmet aktualnog nadzora su:

Crpni agregat 1 (CA 1) i Crpni agregat 4 (CA 4) crpne stanice Sv. Stjepan -Prethodni nadzor CA 1 proveden je u trećem mjesecu, te je utvrđena blaga neuravnoteženost mase rotora u frekvencijskom spektru efektivne brzine vibracija popraćena s malim doprinosom harmonika ekscentriciteta magnetskog polja u spektru envelope. Naznaka početne neispravnosti pogonskog ležaja centrifugalne crpke CA 4 u frekvencijskom spektru efektivnog ubrzanja vibracija utvrđena je prethodnim nadzorom provedenim u petom mjesecu 2023. godine. Analiza frekvencijskih spektara i spektara envelope provedena na ostalim položajima mjerenja sustava CA 4 sugerira prisutnost ekscentričnosti čiji uzrok nije neuravnoteženost mase rotora, te početno oblikovanje efekta plasta sijena u spektru efektivnog ubrzanja. U međuvremenu temperaturna zaštita pogonskog ležaja CA 4 ostvarena kontinuiranim nadzorom topline s pomoću kontaktnog senzora temperature Pt - 100 integriranog u SCADA (en. Supervisory control and data acquisition) sustav pri približno 1 od 10 pokretanja pogona prekida napajanje kaveznog motora CA 4 uslijed porasta temperature pogonskog ležaja crpke iznad 100 °C. Uobičajena radna temperatura spomenutog ležaja mjerena lokalno Pt - 100 sondom kreće se od 60 do 90 °C.

Crpni agregat 2 (CA 2) crpne stanice Gradole - u sklopu prethodnog nadzora analizom rezultata frekvencijskog spektra efektivne brzine vibriranja utvrđena je neispravnost na frekvenciji pobude koja se poklapa s frekvencijom mehaničke brzine vrtnje rotora i njenog četvrtog harmonika. Analizom spektra envelope utvrđen je početni razvoj smetnje na kotrljajućem elementu pogonskog ležaja elektromotora (EM1).

Crpni agregat 3 (CA 3) crpne stanice Gradole - vibracije ovog elektromotornog pogona nisu mjerene u sklopu nadzora provedenog u petom mjesecu.

Crpni agregat 7 (CA 7) crpne stanice Gradole - analizom rezultata frekvencijskog spektra efektivne brzine vibriranja na frekvenciji pobude uslijed dinamičke ekscentričnosti uzrokovane neuravnoteženosti mase rotora utvrđena je razina vibracija blizu gornje granice područja C prema ISO 10816 - 3: Aktivnosti održavanja provesti prvom sljedećom prilikom. Balansiranje rotora nužno stoga je provesti odmah nakon evaluacije aktualnim nadzorom.

5.1.1 Tehnički opis crpne stanice Sv. Stjepan

Crpna stanica Sv. Stjepan sastoji se od četiri identična frekvencijski upravljiva elektromotorna pogona centrifugalnih crpki skraćeno nazvanih crpni agregati (CA) snage 355 kW. Prikaz dva od četiri crpna agregata navedene crpne stanice dan je *Slikom 5.1.*

Slika 5.1 Crpni agregat 3 i 4 crpne stanice Sv. Stjepan

Tehničke karakteristike kaveznih motora sva četiri crpna agregata crpne stanice Sv. Stjepan prikazane su *Tablicom 5.1*.

Tablica 5.1 Tehničke karakteristike kaveznih motora crpnih agregata crpne stanice Sv. Stjepan

Proizvođač i serija	Siemens 1LE5	
Frekvencijsko upravljanje	DA	
Visina osi	<i>H</i> = 355 mm	
Izvedeni oblik	IM B3	
Temperaturni razred izolacije	F (155 °C)	
Faktor pogona	SF = 1,15	
Vrsta hlađenja	IC 411	
Nazivni napon u trokut spoju	<i>U</i> _N = 400 V/ 50 Hz	
Nazivna struja u trokut spoju	<i>I</i> _N = 600 A/ 50 Hz	
Nazivni napon u zvijezda spoju	U _N = 690 V/ 50 Hz	
Nazivna struja u zvijezda spoju	<i>I</i> _N = 350 A/ 50 Hz	
Nazivna snaga	P _N = 355 kW	
Faktor snage	$\cos \phi = 0.89$	
Ukupni stupanj korisnosti	$\eta_{ m uk} = 0,958$	
Nazivna mehanička brzina vrtnje	$n = 2988 \text{ min}^{-1}$	
Broj pari polova	<i>p</i> = 1	
Klizanje	s = 0,004	
Osjetni senzori temperature	Pt 100	
Ležaj na pogonskoj strani	6317 - C4 - S0	
Ležaj na strani suprotno pogonskoj	6317 - C4 - S0	
Mazivo prema preporuci proizvođača	UNIREX - N3	
Interval podmazivanja	30 g masti svakih 3000 h rada	

Tehničke karakteristike centrifugalnih crpki sva četiri crpna agregata crpne stanice Sv. Stjepan prikazane su *Tablicom 5.2*.

Tablica 5.2 Tehničke karakteristike centrifugalnih crpki crpnih a	agregata crpne stanice
Sv. Stiepan	

	, ,
Proizvođač i serija	KSB MTC
Nazivni protok	Q _N = 80 l/s
Nazivni broj okretaja u minuti	n _N = 2989 min ⁻¹
Napor crpke	<i>H</i> = 328,12 m
Promjer prirubnice odsisa	<i>D</i> _N = 125 mm
Broj stupnjeva rotora	4
Vrsta izvedbe	Horizontalna na podestu s pogonom na
	usisnoj strani i valjnim ležajevima
	obostrano
Ležaj na pogonskoj strani	7312 - B - XL - TVP - UA
Ležaj na strani suprotno pogonskoj	7312 - B - XL - TVP - UA

5.1.2 Tehnički opis crpne stanice Gradole

Crpna stanice Gradole sastoji se od sedam vertikalnih crpnih agregata pogonjenih neupravljivim kaveznim motorima sukladno prikazanom *Slikom 5.2*.

Slika 5.2 Crpna stanica Gradole

Četiri crpna agregata imaju snagu 450 kW, dok preostala tri imaju snagu 700 kW. Crpne agregate je s obzirom na identičnost izvedbe moguće grupirati u tri grupe:

Tehničke karakteristike kaveznih motora crpnih agregata Grupe 1: CA 1 i CA 2 prikazane su *Tablicom 5.3.*

Tablica 5.3 Tehničke karakteristike kaveznih motora crpnih agregata Grupe 1: CA 1 i CA 2 crpne stanice Gradole

Proizvođač i serija	Siemens 1LA1
Frekvencijsko upravljanje	NE
Visina osi	<i>H</i> = 400 mm
Izvedeni oblik	IM V1
Temperaturni razred izolacije	F (155 °C)
Faktor pogona	SF = 1,15
Vrsta hlađenja	IC 411
Nazivni napon u zvijezda spoju	<i>U</i> _N = 4000 V/ 50 Hz
Nazivna struja u zvijezda spoju	l _N = 77 A/ 50 Hz
Nazivna snaga	<i>P</i> _N = 450 kW
Faktor snage	$\cos \varphi = 0.87$
Nazivna mehanička brzina vrtnje	$n = 1488 \text{ min}^{-1}$
Broj pari polova	p = 2
Klizanje	s = 0,008
Osjetni senzori temperature	Pt 100
Ležaj na pogonskoj strani	6226 - C3
Ležaj na strani suprotno pogonskoj	6319 M/C4VL0241
Mazivo prema preporuci proizvođača	Shell Alavania G3
Interval podmazivanja	40 g masti svakih 4000 h rada

Tehničke karakteristike kaveznih motora crpnih agregata Grupe 2: CA 3 i CA 4 prikazane su *Tablicom 5.4.*

Tablica 5.4 Tehničke karakteristike kaveznih motora crpnih agregata Grupe 2 crpne

Proizvođač i serija	Siemens 1LA1
Frekvencijsko upravljanje	NE
Visina osi	<i>H</i> = 400 mm
Izvedeni oblik	IM V1
Temperaturni razred izolacije	F (155 °C)
Faktor pogona	SF = 1,15
Vrsta hlađenja	IC 411
Nazivni napon u zvijezda spoju	<i>U</i> _N = 6000 V/ 50 Hz
Nazivna struja u zvijezda spoju	<i>I</i> _N = 53 A/ 50 Hz
Nazivna snaga	<i>P</i> _N = 450 kW
Faktor snage	$\cos \phi = 0.86$
Nazivna mehanička brzina vrtnje	$n = 1477 \text{ min}^{-1}$
Broj pari polova	p = 2
Klizanje	s = 0,0153
Osjetni senzori temperature	Pt 100
Ležaj na pogonskoj strani	6226 - C3
Ležaj na strani suprotno pogonskoj	7222 B
Mazivo prema preporuci proizvođača	Shell Alavania G3
Interval podmazivanja	40 g masti svakih 4000 h rada

Tehničke karakteristike centrifugalnih crpki crpnih agregata Grupe 1 i Grupe 2 prikazane su *Tablicom 5.5*.

Tablica 5.5 Tehničke karakteristike centrifugalnih crpki crpnih agregata Grupe 1 i Grupe 2 crpne stanice Gradole

Proizvođač i serija	Caprari ES
Nazivna snaga	$P_{\rm N}$ = 450 kW
Vrsta izvedbe	Vertikalna s višestupanjskim rotorom
Ležaj na pogonskoj strani	6226 - C3
Ležaj na strani suprotno pogonskoj	29326 E

Tehničke karakteristike kaveznih motora crpnih agregata Grupe 3: CA 5, CA 6 i CA 7 prikazane su *Tablicom 5.6.*

Tablica 5.6 Tehničke karakteristike kaveznih motora crpnih agregata Grupe 3 crpne stanice Gradole

Proizvođač i serija	Siemens 1LA1
Frekvencijsko upravljanje	NE
Visina osi	<i>H</i> = 450 mm
Izvedeni oblik	IM V1
Temperaturni razred izolacije	F (155 °C)
Faktor pogona	SF = 1,15
Vrsta hlađenja	IC 411
Nazivni napon u zvijezda spoju	<i>U</i> _N = 6000 V/ 50 Hz
Nazivna struja u zvijezda spoju	<i>I</i> _N = 82 A/ 50 Hz
Nazivna snaga	P _N = 700 kW
Faktor snage	$\cos \varphi = 0.85$
Nazivna mehanička brzina vrtnje	$n = 1482 \text{ min}^{-1}$
Broj pari polova	p = 2
Klizanje	s = 0,012
Osjetni senzori temperature	Pt 100
Ležaj na pogonskoj strani	6224 - C3
Ležaj na strani suprotno pogonskoj	7224 B
Mazivo prema preporuci proizvođača	Shell Alavania G3
Interval podmazivanja	40 g masti svakih 4000 h rada

Tehničke karakteristike centrifugalnih crpki crpnih agregata Grupe 3 prikazane su *Tablicom 5.7*.

Tablica 5.7 Tehničke karakteristike centrifugalnih crpki crpnih agregata Grupe 3

Proizvođač i serija	Caprari ES
Nazivna snaga	<i>P</i> _N = 700 kW
Vrsta izvedbe	Vertikalna s višestupanjskim rotorom
Ležaj na pogonskoj strani	6226 - C3
Ležaj na strani suprotno pogonskoj	29326 E

5.2 Primijenjene vrste instrumenata i standarda

Mjerenje vibracija provedeno je akcelerometrom SKF CMSS2200 pričvršćenim na kućište strojeva magnetskim držačem. Specifikacije akcelerometra prikazane su *Tablicom 5.8.* [28]

Specifikacija CMSS 2200	
Raspon radne frekvencije	0,7 – 10000 Hz (+- 3 dB)
Raspon radne temperature	od - 50 do 120 °C
Naponska osjetljivost	100 mV/ <i>g</i>
Preciznost osjetljivosti	5 mV na 25 °C
Maksimalni udar	5000 g
Maksimalna sinusna radna akceleracija	80 <i>g</i>
Vlastita frekvencija	22 kHz
Vrsta konektora	CMSS 942
Način montaže	M6 vijak
Izlazna jedinica	mV
Masa	0,135 kg
Dimenzije	55 x 25 x 40 mm
Materijal kućišta	Nehrđajući čelik 316

Tablica 5.8 Specifikacije akcelerometra SKF CMSS2200

Izvedba akcelerometra SKF CMSS2200 s pripadajućim dimenzijama prikazana je *Slikom 5.3.* [28]

Slika 5.3 Izvedba SKF CMSS2200 akcelerometra

Prethodno opisani akcelerometar spojen je na vanjsku jedinicu za obradu signala SKF Microlog Analyzer AX, koja je prikazana *Slikom 5.4.* [29]

Slika 5.4 SKF Microlog Analyzer AX vanjska jedinica za obradu signala

Pri čemu su označene tipke sljedećih funkcija:

- 1 Šest funkcijskih tipki za odabir opcija na dnu sučelja
- 2 Numerička tipkovnica
- 3 Shift tipka koja vrši ulogu nule u numeričkoj tipkovnici, ali omogućuje i pozivanje dodatnih opcija
- 4 Enter tipke za potvrdu odabira označene opcije
- 5 Navigacijske strelice za promjenu odabira opcije ili upravljanje indikatorom pri očitavanju rezultata
- 6 Tipka za uključivanje i isključivanje

U vanjskoj jedinici za obradu signala SKF Microlog Analyzer AX provode se procesi obrade signala navedeni u potpoglavlju 4.1.2. Osnovne mogućnosti prikaza rezultata uključuju: frekvencijski spektar efektivne brzine i akceleracije, spektar envelope i kaskadni prikaz. Dodatne mogućnosti prikaza uključuju spektar gustoće snage, cepstrum prikaz, te paralelni prikaz vremenske domene i ostale napredne vrsta prikaza. Za potrebe periodičkog nazora analiziranog u ovom radu dovoljne su osnovne vrste prikaza rezultata. Jedinica za vanjsku obradu signala sadrži i algoritam za provođenje postupka balansiranja rotora.

Opcija ROUTE često se koristi za provođenje periodičkog nadzora vibracija unutar istih postrojenja kroz višestruko navrata, kao što je to slučaj crpnih stanica u praktičnom djelu ovog rada. ROUTE omogućuje izradu predloška slijeda mjerenja unutar pojedinog postrojenja na temelju postojeće baze podataka prethodnih mjerenja iz softvera SKF Optitude Analyst. Predložak omogućuje vremenski efikasnije provođenje mjerenja uz korištenje postojećih postavki uzorkovanja i odabira izlaznog oblika rezultata. Ova opcija posebno je pogodna za postrojenja s puno različitih grupa strojeva. [29]

5.3 Postupak provođenja nadzora

Periodički vibracijski nadzor elektromotornih pogona crpnih agregata CA 1 i CA 4 crpne stanice Sv. Stjepan, te CA 2, CA 3 i CA 7 crpne stanice Gradole proveden je prema: DIN 2056/ ISO 10816-3/ ISO 20816-3 standardima, odnosno prema teoriji iznesenoj u potpoglavlju 4.1. Sukladno tome mjerenja vibracija opisanim instrumentarijem provedena su pri ustaljenom režimu rada u horizontalnom (H) i vertikalnom (V) smjeru na položajima kućišta u neposrednoj blizini ležajeva pogonske i suprotne strane kaveznog motora (EM1 i EM2), te centrifugalne crpke (A i B) crpne stanice Sv. Stjepan. Karakteristične frekvencije pobude od interesa određene izrazima iz potpoglavlja 3.1.2 dijelom su izračunate u sklopu ovog rada, dok su dijelom poznate iz baze podataka prethodnih mjerenja. Njihove vrijednosti bit će navedene u potpoglavlju 5.4. Prikaz karakterističnih položaja i smjerova mjerenja na elektromotornom pogonu odnosno crpnom agregatu (CA) navedene crpne stanice prikazan je *Slikom* 5.5.

Slika 5.5 Karakteristični položaji i smjerovi mjerenja vibracija CA crpne stanice Sv. Stjepan

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja pogonske strane kaveznog motora (EM1) CA 1 crpne stanice Sv. Stjepan prikazano je *Slikom 5.6.*

Slika 5.6 Mjerenje vibracija u smjeru H na položaju EM1 CA 1 crpne stanice Sv. Stjepan

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja strane kaveznog motora (EM2) suprotne pogonskoj CA 1 crpne stanice Sv. Stjepan prikazano je *Slikom 5.7.*

Slika 5.7 Mjerenje vibracija u smjeru H na položaju EM2 CA 1 crpne stanice Sv. Stjepan

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja pogonske strane centrifugalne crpke (A) CA 4 crpne stanice Sv. Stjepan prikazano je *Slikom 5.8.*

Slika 5.8 Mjerenje vibracija u smjeru H na položaju A CA 4 crpne stanice Sv. Stjepan

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja strane centrifugalne crpke (B) suprotne pogonskoj CA 4 crpne stanice Sv. Stjepan prikazano je *Slikom 5.9.*

Slika 5.9 Mjerenje vibracija u smjeru H na položaju B CA 4 crpne stanice Sv. Stjepan

Pri provođenju periodičkog vibracijskog nadzora crpne stanice Gradole, mjerenje na ležaju crpke strane suprotne pogonskoj (B) nije provedeno uslijed nedostupnosti zbog specifične izvedbe vertikalnih crpnih agregata. Karakteristični položaji i smjerovi mjerenja vibracija na vertikalnom crpnom agregatu (CA) crpne stanice Gradole prikazani su *Slikom 5.10.*

Slika 5.10 Karakteristični položaji i smjerovi mjerenja vibracija CA crpne stanice Gradole

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja pogonske strane kaveznog motora (EM1) CA 2 crpne stanice Gradole prikazano je *Slikom 5.11.*

Slika 5.11 Mjerenje vibracija u smjeru H na položaju EM1 CA 2 crpne stanice Gradole

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja strane kaveznog motora (EM2) suprotne pogonskoj CA 2 crpne stanice Gradole prikazano je *Slikom 5.12.*

Slika 5.12 Mjerenje vibracija u smjeru H na položaju EM2 CA 2 crpne stanice Gradole

Mjerenje vibracija u vertikalnom (V) smjeru na položaju ležaja strane kaveznog motora (EM2) suprotne pogonskoj CA 7 crpne stanice Gradole prikazano je *Slikom 5.13.*

Slika 5.13 Mjerenje vibracija u smjeru V na položaju EM2 CA 7 crpne stanice Gradole

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja pogonske strane centrifugalne crpke (A) CA 2 crpne stanice Gradole prikazano je *Slikom 5.14.*

Slika 5.14 Mjerenje vibracija u smjeru H na položaju A CA 2 crpne stanice Gradole

Mjerenje vibracija u vertikalnom (V) smjeru na položaju ležaja pogonske strane centrifugalne crpke (A) CA 2 crpne stanice Gradole prikazano je *Slikom 5.15*.

Slika 5.15 Mjerenje vibracija u smjeru V na položaju A CA 2 crpne stanice Gradole

Mjerenje vibracija u horizontalnom (H) smjeru na položaju ležaja pogonske strane centrifugalne crpke (A) CA 7 crpne stanice Gradole prikazano je *Slikom 5.16*.

Slika 5.16 Mjerenje vibracija u smjeru H na položaju A CA 7 crpne stanice Gradole

Razlika u načinu postavljanja akcelerometra na *Slici 5.16* u odnosu na *Sliku 5.14* određena je različitim izvedbama vertikalnih centrifugalnih crpki.

Izlazni rezultati mjerenja prikazani su nakon obrade signala preko frekvencijskih spektara efektivnih vrijednosti (en. *Root Mean Square (RMS)*) brzine i ubrzanja vibracija, te spektra envelope i kaskadnog prikaza usporedbe aktualnog mjerenja s prethodnima. Analiza i interpretacija rezultata dana je kroz sljedeće potpoglavlje.

5.4 Analiza i interpretacija rezultata

Kroz ovo potpoglavlje provedena je analiza i interpretacija rezultata prethodno opisanih mjerenja vibracija u sklopu periodičkog vibracijskog nadzora dva crpna agregata (CA) crpne stanice Sv. Stjepan i tri crpna agregata (CA) crpne stanice Gradole. Analizirani su frekvencijski spektri 0 - 1000 Hz efektivne brzine vibracija, frekvencijski spektri 0 - 10000 Hz efektivnog ubrzanja vibracija i spektri envelope s granicama filtra podešenim prema karakterističnim frekvencijama pobude uslijed oštećenja ležajeva, te temeljnim frekvencijama pobuda uslijed neuravnoteženosti mase i ekscentričnosti rotora. Frekvencije odziva efektivnih vrijednosti vibracija uspoređeni su s karakterističnim frekvencijama sila pobude uslijed neispravnosti pogona izračunatim prema izrazima (3.23) - (3.28):

- Frekvencija sile pobude uslijed neuravnoteženosti mase rotora: *f*_{nm}, Hz
- Frekvencija sile pobude uslijed ekscentričnosti rotora: f_{er}, Hz
- Frekvencija sile pobude uslijed loma rotorskog štapa: f_{šr}, Hz
- Frekvencija sile pobude uslijed asimetrije magnetskog polja statora: f_{emp} , Hz
- Asimetrija okretnog magnetskog polja uz asimetriju struja namotaja statora i/ili rotora: f_{emns}, Hz

Analizom spektara envelope utvrđeni su kumulativni doprinosi odziva efektivnog ubrzanja vibracija na frekvencijama viših harmonika temeljnih frekvencija pobude uslijed oštećenja valjnih ležajeva definiranih izrazima (3.28) - (3.31):

- Frekvencija pobude pri oštećenju vanjske staze prstena valjnog ležaja f_{of}, Hz
- Frekvencija pobude pri oštećenju unutarnje staze prstena valjnog ležaja f_{if}, Hz
- Frekvencija pobude uslijed oštećenja valjnog elementa valjnog ležaja f_{re}, Hz
- Frekvencija pobude uslijed oštećenja kaveza valjnog ležaja f_{cq} , Hz

Vrijednosti su tih frekvencija poznate iz prethodno provedenih ispitivanja na istim crpni agregatima, uz to moguće je i očitavanje iz kataloga ili web stranica proizvođača ležajeva. [30][31][32]

U prvom potpoglavlju ovog potpoglavlja bit će analizirani rezultati mjerenja CA 1 i CA 4 crpne stanice Sv. Stjepan s obzirom na njihovu identičnost izvedbe istaknutu u potpoglavlju 5.1. Kroz drugo potpoglavlje ovog poglavlja analiziraju se rezultati mjerenja na CA 2 crpne stanice Gradole koji pripada Grupi 1 elektromotornih pogona te crpne stanice sukladno podjeli iz potpoglavlja 5.1. Sukladno toj podjeli treće potpoglavlje ovog potpoglavlja analizira rezultate mjerenja na CA 3 (Grupa 2), a četvrto na CA 7 (Grupa 3) crpne stanice Gradole. Analiza je provedena na temelju izvještaja tvrtke Kalmer d.o.o. Trbovlje koja je provela nadzor. [30][31]

Referentne vrijednosti maksimalne amplitude odziva efektivne brzine vibriranja v_{RMS} , mm/s su definirane ranije prema standardu ISO 10816 - 3 *Tablicom 4.2* i *Tablicom 4.1*. [22] Usporedba amplitude odziva efektivne brzine vibriranja v_{RMS} , mm/s s rezultatima prethodnih periodičkih vibracijskih nadzora bit će ostvarena kaskadnim prikazom frekvencijskog spektra efektivne brzine vibriranja. Zbog sažetosti će se analizirati isključivo vrste prikaza izlaznih rezultata mjerenja vibracija ključne za dijagnosticiranje neispravnosti pojedinog elektromotornog pogona.

5.4.1 Analiza rezultata mjerenja vibracija CA 1 i CA 4 Sv. Stjepan

Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorne pogone CA 1 i CA 4 crpne stanice Sv. Stjepan dane su *Tablicom 5.9.*

Tablica 5.9 Karakteristične frekvencije pobude uslijed neispravnosti kaveznog motora
CA 1 i CA 4 crpne stanice Sv. Stjepan

$f_{nm} = \frac{n}{60}$	49,8 Hz
n	[49,8 Hz; 99,6 Hz; 149,4 Hz; 199,2 Hz; 249 Hz; 298,8
$f_{\rm er} = v \cdot \frac{1}{60}$	Hz; 348,6 Hz; 398,4 Hz]
$f_{\rm šr} = \frac{n}{60} \& 2 \cdot \frac{n}{60}$	49,8 Hz & 99,6 Hz
$f_{\rm emp} = f_{\rm s} \mid 2 \cdot f_{\rm s}$	50 Hz 100 Hz
n	[49,6 Hz & 50,2]; [99,2 Hz & 100 Hz]; [149 Hz & 149,8
$f_{\rm emns} = v \cdot \frac{\pi}{60} \pm 2 \cdot p \cdot s \cdot f_{\rm s}$	Hz]; [198,8 Hz & 199,6 Hz]

Vrijednosti navedenih karakterističnih frekvencija uslijed oštećenja ležaja CA 1 i CA 4 crpne stanice Sv. Stjepan dane su *Tablicom 5.10.* [30]

Tablica 5.10 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 1 i CA 4 Sv. Stjepan

Sv. Stjepan CA 1 i CA 4	Vrsta valjnog ležaja	
Frekvencija pobude	6317/C4	7312 - B - XL - TVP - UA
f _{if} , Hz	243,9 Hz	346, 43 Hz
f _{of} , Hz	153,9 Hz	241,57 Hz
f _{re} , Hz	206,9 Hz	202,86 Hz
f _{cg} , Hz	-	20,1 Hz

Kaskadni prikaz odziva efektivne brzine vibriranja v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju EM1: pogonski ležaj kaveznog motora crpnog agregata CA 1 Sv. Stjepan prikazan je *Slikom 5.17.* [30]

Slika 5.17 Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju EM1 CA 1 Sv. Stjepan

Diplomski rad

Iz kaskadnog prikaza na Slici 5.17 vidljivo je povećanje amplituda efektivne brzine vibracija v_{RMS}, mm/s frekvencije jednake frekvenciji pobude uslijed neuravnoteženosti mase rotora: f_{nm} = 49,8 Hz na vrijednosti 0,47 mm/s u H smjeru i 0,39 mm/s u V smjeru. Uz to uočljiv je porast odziva frekvencija drugog harmonika karakterističnih frekvencija sile pobude uslijed asimetrije magnetskog polja i struja u namotajima f_{emns} = 99,2 Hz i 100 Hz na 0,2 mm/s. Iznosi amplituda su još uvijek niski što ukazuje na sam početak obiju nepravilnosti. S obzirom na to da je motor frekvencijski upravljan treba kao uzrok ove pobude razmotriti frekvencijski regulator. Ekscentričnost rotora motora uslijed nepravilnosti pri spoju s centrifugalnom crpkom eliminirana je kao uzrok pobude zbog malog omjera horizontalnih i vertikalnih odziva (~ 1) sukladno Tablici 3.1. Daljnje praćenje stanja sljedećim periodičkim vibracijskim nadzorom trebalo bi jasnije odrediti dijagnostičku sliku s obzirom na utvrđeni odziv na frekvenciji pobude uslijed neuravnoteženosti mase rotora koja se poklapa s frekvencijom mehaničke brzine vrtnje. Daljnje slabljenje odziva efektivne brzine vibracija na toj frekvenciji i jačanje odziva na frekvencijama viših harmonika, pogotovo četvrtog sugeriralo bi da dinamičku ekscentričnost uzrokuje nekorektnost tolerancija dosjeda ležaja s kućištem i vratilom.

Kaskadni prikaz odziva efektivne brzine vibriranja *v*_{RMS}, mm/s na frekvencijskom spektru 0 - 1000 Hz za smjer H na položaju EM2 crpnog agregata CA 1 Sv. Stjepan prikazan je *Slikom 5.18.* [30]

Slika 5.18 Kaskadni prikaz H odziva efektivne brzine vibriranja na položaju EM2 CA 1 Sv. Stjepan

Iz *Slike 5.18* za položaj mjerenja EM2 nameće se isti zaključak po pitanju uzroka, frekvencija i intenziteta vibracija kao i u slučaju mjerenja na položaju EM1 kaveznog motora crpnog agregata CA 1 Sv. Stjepan.

Frekvencijski spektar envelope H smjera odziva ubrzanja vibriranja za položaje mjerenja EM1 i EM2 crpnog agregata CA 1 Sv. Stjepan prikazan je *Slikom 5.19.* [30]

Slika 5.19 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima EM1 i EM2 CA 1 Sv. Stjepan

Kumulativan doprinos odziva viših harmonika frekvencije $f_{emns} = 99,2$ Hz i 100 Hz u iznosu od 0,138g m/s² očitan u spektru envelope H smjera odziva ubrzanja vibracija EM2 potvrđuje ranije dijagnosticiranu neispravnost asimetrije elektromagnetskih prilika. Kaskadni prikaz odziva efektivne brzine vibriranja v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju A: pogonski ležaj centrifugalne crpke crpnog agregata CA 1 Sv. Stjepan prikazan je *Slikom 5.20.* [30]

Slika 5.20 Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju A CA 1 Sv. Stjepan

Iz kaskadnog prikaza na *Slici 5.20* vidljivo je povećanje amplituda efektivne brzine vibracija $v_{\rm RMS}$, mm/s frekvencije jednake frekvenciji pobude uslijed neuravnoteženosti mase rotora: $f_{\rm nr} = 49,8$ Hz na vrijednosti 1,95 mm/s u H smjeru i 1,8 mm/s u V smjeru. Vidljiv je razvoj odziva trenutno niske amplitude na višim harmonicima, pri čemu su dominantni odzivi na bočnim pojasevima oko drugog harmonika koji se poklapaju s frekvencijama sile pobude uslijed asimetrije magnetskog polja i struja u namotajima $f_{\rm emns} = 99,2$ Hz i 100 Hz. Povećan odziv u odnosu na kućišta ležajeva kaveznog

motora, mogući je pokazatelj utjecaja izvedbe ležaja na iznos vibracija. Frekvencijski spektar envelope H odziva pogonskog ležaja crpke ne ukazuje na moguća karakteristična oštećenja ležajeva.

Kaskadni prikaz H i V odziva brzine vibracija položaja B ne ukazuje na značajno povećanje brzina vibracija u odnosu na prethodna mjerenja kao što je to slučaj za prethodno razmatrane položaje, te stoga nije ni razmatran. Spektar envelope H smjera na položaju B ne ukazuje na kumulativan doprinos odziva ubrzanja vibracija viših harmonika neke od karakterističnih frekvencija pobuda uslijed oštećenja ležaja.

Prikaz odziva efektivnog ubrzanja vibracija a_{RMS} , m/s² na frekvencijskom spektru 0 - 10000 Hz za smjer H mjerenja na položajima A i B: pogonski ležaj i ležaj nasuprot pogonskom centrifugalne crpke CA 1 Sv. Stjepan dan je *Slikom 5.21.* [30]

Slika 5.21 H odziv efektivnog ubrzanja vibracija na položajima A i B CA 1 Sv. Stjepan

Iz *Slike 5.21* vidljivo je postepeno oblikovanje efekta plasta sijena po obrascu prethodno prikazanim *Slikom 3.4.* Na položaju mjerenja A vidljivo je značajnije oblikovanje, dok je na položaju B pojava navedenog efekta u početnoj fazi. Kao što je navedeno u potpoglavlju 3.1 uzrok efekta plasta sijena većinom se pripisuje nepotpunoj raspodjeli maziva po ležaju, ali uzrok mogu biti i tolerancije dosjeda ležaja s kućištem ili vratilom.

Interpretacija analiziranih rezultata mjerenja vibracija na razini sustava CA 1 Sv. Stjepan:

Intenziteti efektivnih brzina vibracija na svim položajima crpnog agregata 1 usporedbom s referentnim vrijednostima ISO 10816 - 3 standarda (Tablice 4.2 i 4.3) upadaju u područje A - strojevi najviše razine ispravnosti. Usporedbom s vrijednostima prethodnih ispitivanja uočen je porast odziva efektivne brzine vibracija na frekvencijama koje upućuju na početne neispravnosti: neuravnoteženosti mase rotora, te asimetrije elektromagnetskih prilika i struja u namotajima. Asimetrija elektromagnetskih prilika potvrđena je analizom envelope frekvencijskog spektra na položaju ležaja kaveznog motora nasuprot pogonskom: EM2. Analiza frekvencijskog spektra ubrzanja vibracija na položajima ležajeva crpke: A i B ukazuje na izraženo oblikovanje efekta plasta sijena, pogotovo na pogonskom ležaju crpke A. Odzive na frekvenciji pobude uslijed neuravnoteženosti mase rotora f_{nr} = 49,8 Hz i višim harmonicima te frekvencije treba posebice motriti u cilju određivanja eventualne nekorektnosti tolerancija dosjeda ležaja. Ako se daljnjim vibracijskim nadzorima utvrdi daljnje razvijanje efekta plasta sijena i popratno povećanje temperature ležajeva, uz kontrolu tolerancija dosjeda ležaja nužno je razmotriti zamjenu postojećih valjnih ležajeva bez radijalne zračnosti s ležajevima koji posjeduju radijalnu zračnost u cilju postizanja bolje raspodjele maziva. Nadzorom električnih veličina kaveznog motora crpnog agregata dobio bi se bolji uvid u asimetriju elektromagnetskih prilika i utjecaj regulatora frekvencije na istu.
Kaskadni prikaz odziva efektivne brzine vibriranja v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju EM1: pogonski ležaj kaveznog motora crpnog agregata CA 4 Sv. Stjepan ne ukazuje na porast intenziteta efektivne brzine vibracija pri usporedbi s prethodno provedenim nadzorima, te stoga nije prikazan. Razmatran je prikaz frekvencijskih spektara efektivne brzine vibracija na tim položajima sukladno *Slici 5.22.* [30]

Slika 5.22 Prikaz frekvencijskog spektra H i V odziva efektivne brzine vibriranja na položaju EM1 CA 4 Sv. Stjepan

Najveći intenzitet efektivne brzine vibriranja je 1,1 mm/s u H smjeru na frekvenciji pobude uslijed asimetrije struja namotaja i asimetrije magnetskog polja: $f_{emns} = 49,6$ Hz i 50,2 Hz. Relativno velik omjer odziva efektivne brzine vibracija H i V smjera izmjerenih na tom položaju (~ 3) poklapa se prema *Tablici 3.1* s dijagnostičkom slikom ekscentričnosti rotora čiji uzrok nije neuravnoteženost mase rotora.

Kaskadni prikaz odziva efektivne brzine vibriranja *v*_{RMS}, mm/s na frekvencijskom spektru 0 - 1000 Hz za smjer H na položaju EM2: ležaj nasuprot pogonskom kaveznog motora crpnog agregata CA 4 Sv. Stjepan prikazan je *Slikom 5.23.* [30]

Slika 5.23 Kaskadni prikaz H odziva efektivne brzine vibriranja na položaju EM2 CA 4 Sv. Stjepan

Iz *Slike 5.23* uočljivo je neznatno jačanje intenziteta odziva na frekvenciji pobude uslijed neuravnoteženosti mase rotora $f_{nm} = 49,8$ Hz. Značajniji rast odziva efektivne brzine vibracija prisutan je na drugom, trećem i šestom harmoniku frekvencije pobude mehaničke brzine vrtnje koji se poklapaju s frekvencijama pobude uslijed ekscentričnosti rotora motora čiji uzrok nije neuravnoteženost mase rotora: $f_{er} = [99,6$ Hz, 149,4 Hz, 298,8 Hz]. Frekvencije pobude uslijed asimetrije struja namotaja i magnetskog polja: $f_{emns} = [99,2$ Hz i 100 Hz; 298,32 Hz i 299,28 Hz] prateća su pojava na bočnim pojasevima centriranim oko drugog i šestog harmonika frekvencije mehaničke brzine vrtnje. Amplitude efektivne brzine vibracija su još uvijek poprilično niske, na svim frekvencijama ispod 1 mm/s.

Frekvencijski spektar envelope H smjera odziva ubrzanja vibriranja za položaje mjerenja EM1 i EM2 crpnog agregata CA 4 Sv. Stjepan prikazan je *Slikom 5.24.* [30]

Slika 5.24 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima EM1 i EM2 CA 4 Sv. Stjepan

Frekvencijski spektar envelope prikazan *Slikom 5.24* na oba položaja mjerenja potvrđuje asimetriju elektromagnetskih prilika s najvećim kumulativnim doprinosom odziva efektivnog ubrzanja vibracija viših harmonika frekvencije asimetrije magnetskog polja: $f_{emp} = 100$ Hz.

Kaskadni prikaz odziva efektivne brzine vibriranja v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju A: pogonski ležaj centrifugalne crpke crpnog agregata CA 4 Sv. Stjepan prikazan je *Slikom 5.25*. [30]

Slika 5.25 Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju A CA 4 Sv. Stjepan

Iz *Slike 5.25* vidljiv je dvostruki omjer iznosa odziva u H smjeru u odnosu na iznos u V smjeru. Značajniji porast amplitude efektivne brzine vibracija pripadajuće frekvencije trećeg harmonika frekvencije pobude mehaničke brzine vrtnje koja se poklapa s frekvencijom pobude uslijed ekscentričnosti rotora $f_{\rm er} = 149,4$ Hz na iznos od 2 mm/s u H smjeru, odnosno 1,1 mm/s u V smjeru. Odziv na frekvenciju pobude osnovne frekvencije mehaničke brzine vrtnje koja se poklapa s frekvencijom pobude uslijed neuravnoteženosti mase rotora $f_{\rm nm} = 49,8$ Hz blago je opao u odnosu na prethodna mjerenja. Oko prethodno spomenute frekvencije oblikovali su se bočni pojasevi odziva na frekvencijama pobude uslijed asimetrije struja namotaja i magnetskog polja: $f_{\rm emns} = 49,4$ Hz i 50,2 Hz. Kao i u slučaju CA 1 Sv. Stjepan na pogonskom ležaju centrifugalne crpke, odnosno mjernom mjestu A intenzitet vibracija je najveći.

Do nešto manjeg porasta odziva efektivne brzine vibracija na identičnim frekvencijama dolazi i na mjernom mjestu B: ležaj centrifugalne crpke nasuprot pogonskom. Na tom je mjernom mjestu iznos amplitude odziva efektivne brzine vibracija na promatranoj frekvenciji $f_{er} = 149,4$ Hz: $v_{RMS} = 1,2$ mm/s u H smjeru i $v_{RMS} = 1,55$ mm/s u V smjeru sukladno *Slici 5.26*.

Slika 5.26 Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju B CA 4 Sv. Stjepan

Uz već opisani značajniji porast odziv na frekvenciji trećeg harmonika, iz *Slike* 5.26 zamjetan je i nešto manji porast odziva na frekvenciju pobude drugog harmonika frekvencije pobude mehaničke brzine vrtnje: $f_{er} = 99,6$ Hz. Odziv na toj frekvenciji

približno je dvostruko veći u H smjeru o odnosu na onaj u V smjeru. Kao i na A položaju mjerenja bočni pojasevi odziva na frekvencijama pobuda uslijed asimetrije struja namotaja i asimetrije magnetskog polja: $f_{emns} = 49,4$ Hz i 50,2 Hz raspoređeni su oko temeljne frekvencije mehaničke brzine vrtnje.

Frekvencijski spektar envelope H smjera odziva ubrzanja vibriranja za položaj mjerenja A crpnog agregata CA 4 Sv. Stjepan prikazan je *Slikom 5.27.*

Slika 5.27 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima A CA 4 Sv. Stjepan

Iz *Slike 5.27* očito je da na frekvenciji pobude uslijed oštećenja kaveza pogonskog ležaja 7312 - B - XL - TVP - UA centrifugalne crpke f_{cg} = 20 Hz dolazi do najvećeg kumulativnog doprinosa odziva efektivnog ubrzanja vibracija.

Prikaz odziva efektivnog ubrzanja vibracija a_{RMS} , m/s² na frekvencijskom spektru 0 - 10000 Hz za smjer H mjerenja na položajima A i B: pogonski ležaj i ležaj nasuprot pogonskom centrifugalne crpke CA 4 Sv. Stjepan dan je *Slikom 5.28.* [30]

Slika 5.28 H odziv efektivnog ubrzanja vibracija na položajima A i B CA 4 Sv. Stjepan

Iz *Slike 5.28* vidljiv je obrazac efekta plasta sijena, pri čemu je na položaju mjerenja B još u početnoj fazi razvoja. Na položaju mjerenja A efekt je dosegao značajniju amplitudu efektivnog ubrzanja vibracija od $a_{RMS} = 0.3 \text{ m/s}^2$. Kaskadni prikaz efektivnog ubrzanja vibracija na frekvencijskom spektru 0 - 10000 Hz za smjer H mjerenja na položaju A prikazan *Slikom 5.29* jasno ukazuje na razvoj efekta plasta sijena (en. *Haystack effect*) kroz period između prošlog i aktualnog nadzora.

Slika 5.29 Kaskadni prikaz odziva efektivnog ubrzanja vibracija u smjeru H na položaju A CA 4

Značajniji razvoj efekta plasta sijena podudara se s opisanim stanjem CA 4 prethodno provođenju ovog nadzora. Povremeno prekomjerno zagrijavanje pogonskog ležaja centrifugalne crpke pri pokretanju pogona opisano u potpoglavlju 5.1 uzrokovano je trenjem, što se poklapa s nepotpunim podmazivanjem kao uzrokom efekta plasta sijena. Uzrok nepotpunog podmazivanja trebalo bi razmatrati kroz: naznake oštećenja ležaja, postojanost ekscentriciteta, te izvedbu i ugradnju ležaja.

Interpretacija analiziranih rezultata mjerenja vibracija na razini sustava CA 4 Sv. Stjepan:

Intenziteti efektivnih brzina vibracija na svim položajima crpnog agregata 4 usporedbom s referentnim vrijednostima ISO 10816 - 3 standarda (*Tablice 4.2 i 4.3*) također upadaju u područje A - strojevi najviše razine ispravnosti. Dijagnostička slika sugerira ekscentričnost rotora motora uslijed utjecaja nepravilnosti spojke ili ležaja; stagnacija ili opadanje odziva na temeljnu frekvenciju pobude mehaničke brzine vrtnje, porast odziva na više harmonike navedene frekvencije, te dvostruki do trostruki omjeri odziva H i V smjera na višestrukim položajima. Dominantan je utjecaj asimetrije elektromagnetskih prilika, te je kao i u slučaju CA 1 Sv. Stjepan za utvrđivanje doprinosa utjecaja regulatora frekvencije toj asimetriji potrebno provesti nadzor električnih veličina kaveznog motora. S obzirom na problem s povremenim pregrijavanjem pogonskog ležaja crpke, naznaku početnog oštećenja kaveza pogonskog ležaja crpke, te obrazac efekta plasta sijena uslijed neravnomjerne raspodjele sloja maziva prisutan na oba ležaja nužno je daljnje praćenje stanja i po potrebi planiranje aktivnosti zamjene ležajeva crpke uz kontrolu tolerancija dosjeda. Ako se razvoj ekscentričnosti nastavi i nakon tih aktivnosti nužno je provjeriti spojku motora i crpke.

5.4.2 Analiza rezultata mjerenja vibracija CA 2 Gradole

Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorni pogon CA 2 crpne stanice Gradole prikazane su *Tablicom 5.11*.

Tablica 5.11	Karakteristične frekvencije sila pobude uslijed neispravnosti za
	elektromotorni pogon CA 2 crpne stanice Gradole

$f_{nm} = \frac{n}{60}$	24,6 Hz
n n	[24,6 Hz; 49,2 Hz; 73,8 Hz; 98,4 Hz; 123 Hz; 147,6
$T_{\rm er} = V \cdot \frac{1}{60}$	Hz; 172,2 Hz; 196,8 Hz; 221,4 Hz; 246 Hz; 270,6 Hz]
$f_{\tilde{s}r} = \frac{n}{60} \& 2 \cdot \frac{n}{60}$	24,6 Hz & 49,2 Hz
$f_{\rm emp} = f_{\rm s} \mid 2 \cdot f_{\rm s}$	50 Hz 100 Hz
	[23 Hz & 26,2 Hz]; [48 Hz & 51,2 Hz]; [72,8 Hz & 76
f v ⁿ i 2 p o f	Hz]; [97,6 Hz & 100,8 Hz]; [122,4 Hz & 125,6 Hz];
$I_{\text{emns}} = V \cdot \frac{1}{60} \pm 2 \cdot \rho \cdot s \cdot I_{\text{s}}$	[147,2 Hz & 150,4 Hz]; [172 Hz & 175,2 Hz]; [196,8 Hz
	& 200 Hz]; [221,6 Hz & 224,8 Hz]; [246,4 Hz & 249,6
	Hz]; [271,2 Hz & 274,4 Hz]

Vrijednosti navedenih karakterističnih frekvencija uslijed oštećenja ležaja dane su *Tablicom 5.12.* [31]

Tablica 5.12 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 2 Gradole

Gradole CA 2		Vrsta valj	nog ležaja	
Frekvencija pobude	6322/C3	6319M/C4VL0241	6226/C3	29326 E
f _{if} , Hz	120 Hz	119 Hz	130,7 Hz	267,8 Hz
f _{of} , Hz	74 Hz	74,9 Hz	91,5 Hz	226,1 Hz
f _{re} , Hz	96,9 Hz	102 Hz	135,6 Hz	187 Hz
f _{cg} , Hz	9,25 Hz	9,37 Hz	10,1 Hz	11,3 Hz

Kaskadni prikaz odziva efektivne brzine vibracija v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju EM1: pogonski ležaj kaveznog motora crpnog agregata CA 2 Gradole prikazan je *Slikom 5.30.*

Slika 5.30 Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju EM1 CA 2 Gradole

Kaskadni prikaz odziva efektivne brzine vibracija v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju EM2: ležaj nasuprot pogonskom kaveznog motora crpnog agregata CA 2 Gradole prikazan je *Slikom 5.31.*

Slika 5.31 Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju EM2 CA 2 Gradole

Iz *Slike 5.30* i *Slike 5.31* očito je povećanje intenziteta odziva efektivne brzine vibriranja v_{RMS} , mm/s na frekvencijama parcijalnih harmonika osnovne frekvencije pobude mehaničke brzine vrtnje (31/3, 41/3, 91/2, 111/2). Najveći intenzitet efektivne brzine vibriranja $v_{RMS} = 2,4$ mm/s uočen je na položaju EM2 u smjeru V na frekvenciji 105 Hz u blizini parcijalnog harmonika 41/3 frekvencije mehaničke brzine vrtnje. Na frekvencijama 103,4 Hz i 106,6 Hz oko frekvencije 105 Hz, te 282,4 Hz i 285,6 Hz oko frekvencije 284 Hz javljaju se bočni pojasevi odziva uslijed asimetrije

okretnog magnetskog polja i struja u namotajima kao parcijalni harmonici ranije definirane osnovne frekvencije pobude te prirode: $f_{emns} = [23 \text{ Hz } \& 26,2 \text{ Hz}]$. Uočljivo je i postepeno smanjenje intenziteta odziva na silu pobude uslijed neuravnoteženosti mase rotora f_{nm} = 24,6 Hz. Frekvencija odziva efektivne brzine vibracija $v_{RMS} = 0,2$ mm/s u H smjeru na položaju EM1 poklapa se s frekvencijom pobude f_{re} = 97 Hz uslijed oštećenja valjnog elementa pogonskog ležaja kaveznog motora: 6322 C3.

Frekvencijski spektar envelope H smjera odziva ubrzanja vibriranja za položaje mjerenja EM1 i EM2 crpnog agregata CA 2 Gradole prikazan je *Slikom 5.32.*

Slika 5.32 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima EM1 i EM2 CA 2 Gradole

Iz *Slike 5.32* na položaju mjerenja EM2 očit je najveći kumulativni doprinos odziva ubrzanja vibracija drugog harmonika frekvencije pobude uslijed asimetrije magnetskog

polja: $f_{emp} = 100$ Hz, na ovom položaju mjerenja nema izraženih doprinosa harmonika frekvencija koje se poklapaju s frekvencijama pobude uslijed oštećenja ležaja 6319 M/C4. Na položaju mjerenja EM1 uz više harmonike bočnih pojaseva raspoređenih oko parcijalnih harmonika mehaničke brzine vrtnje 24,6 Hz najveći je kumulativni doprinos odziva viših harmonika vibracija na frekvenciji koja se poklapa s frekvencijom pobude uslijed oštećenja unutarnje staze prstena pogonskog ležaja crpke 6226 C3: f_{if} = 130,7 Hz. Sukladno algoritmu demodulacije kojim se dobiva spektar envelope prikazanom u potpoglavlju 3.2, kao posljedica javlja se i značajan doprinos na trećem harmoniku te frekvencije u spektru prikaza demoduliranog signala 0 - 1000 Hz: $f_{\rm if} = 3 \cdot 130,7$ Hz = 392,1 Hz. Doprinosi harmonika frekvencija koje se poklapaju s frekvencijom pobude uslijed oštećenja kaveza: $f_{cg} = 9,25$ Hz i vanjske staze prstena $f_{of} = 74$ Hz pogonskog ležaja kaveznog motora: 6322 C3 također imaju značajan iznos: $0,12 \cdot g \text{ m/s}^2$ iako su zasjenjene od strane ranije navedenih utjecaja. Zanimljivo je uočiti kako harmonici frekvencije koja se poklapa s frekvencijom oštećenja valjnog elementa ležaja 6322 C3: f_{re} = 97 Hz ne daju značajan doprinos ubrzanju vibracija u spektru envelope.

Prikaz odziva efektivnog ubrzanja vibracija *a*_{RMS}, m/s² na frekvencijskom spektru 0 - 10000 Hz za smjer H mjerenja na položajima EM1 i EM2: pogonski ležaj i ležaj nasuprot pogonskom kaveznog motora CA 2 Gradole dan je *Slikom 5.33.*

Slika 5.33 H odziv efektivnog ubrzanja vibracija na položajima EM1 i EM2 CA 2 Gradole

Iz *Slike 5.33* vidljiv je razvoj obrasca efekta plasta sijena pogotovo na položaju mjerenja EM1: pogonski ležaj kaveznog motora. Mogući uzroci u ovom su slučaju oštećenja ležaja i potencijalna nekorektnost tolerancija dosjeda ležaja s vratilom i/ili kućištem na koju ukazuju izlazni rezultati prikazani *Slikom 5.30* i *5.31*..

Vremenski razvoj efekta plasta sijena oblikovanog na odzivu efektivnog ubrzanja vibracija mjerenja na položaju EM1 u smjeru H CA 2 Gradole vidljiv je iz *Slike 5.34.*

Slika 5.34 Kaskadni prikaz odziva efektivnog ubrzanja vibracija u smjeru H na položaju EM1 CA 2 Gradole

Iz *Slike 5.34* je vidljiv značajan razvoj obrasca efekta plasta sijena u periodu od mjesec i pol dana od prethodno provedenog vibracijskog nadzora.

Kaskadni prikaz odziva efektivne brzine vibracija v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju A: pogonski ležaj centrifugalne crpke crpnog agregata CA 2 Gradole prikazan je *Slikom 5.35*.

Slika 5.35 Kaskadni prikaz H i V odziva efektivne brzine vibracija na položaju A CA 2 Gradole

Iz *Slike 5.35* očito je povećanje intenziteta efektivne brzine vibracija v_{RMS} , mm/s u odnosu na prethodna mjerenja. Obrasci odziva vrlo su slični onima na položajima mjerenja EM1 i EM2 CA 2 Gradole. Najveći odzivi ponovno su na frekvencijama parcijalnih harmonika osnovne frekvencije pobude mehaničke brzine vrtnje (31/3, 41/3, 91/2, 111/2). Najveći intenzitet efektivne brzine vibriranja $v_{\text{RMS}} = 1,9$ mm/s uočen je u smjeru V položaja A na frekvenciji parcijalnog harmonika 91/2: 237 Hz. Na frekvencijama 103,4 Hz i 106,6 Hz oko frekvencije 105 Hz, te 282,4 Hz i 285,6 Hz oko frekvencije 284 Hz ponovno se javljaju bočni pojasevi odziva uslijed asimetrije okretnog magnetskog polja i struja u namotajima kao parcijalni harmonici frekvencije: $f_{\text{emns}} = [23 \text{ Hz } \& 26,2 \text{ Hz}].$

Frekvencijski spektar envelope H smjera odziva ubrzanja vibriranja za položaj mjerenja A crpnog agregata CA 2 Gradole prikazan je *Slikom 5.36.*

Slika 5.36 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položaju A CA 2 Gradole

Iz *Slike 5.36* vidljiv je najveći doprinos odziva viših harmonika osnove frekvencije mehaničke brzine vrtnje kao i na položajima EM1 i EM2. Uz to uočljiv je i doprinos odziva viših harmonika frekvencije $f_{if} = 130,7$ Hz koja je karakteristična za oštećenje unutarnje staze prstena pogonskog ležaja crpke: 6226 C3. Kumulativan doprinos odziva viših harmonika na spomenutoj karakterističnoj frekvenciji $0,12 \cdot g \text{ m/s}^2$ izmjeren na položaju A: kućište pogonskog ležaja crpke manji je nego na položaju EM1: kućište pogonskog ležaja kaveznog motora $0,46 \cdot g \text{ m/s}^2$.

Prikaz odziva efektivnog ubrzanja vibracija a_{RMS} , m/s² na frekvencijskom spektru 0 - 10000 Hz za smjer H mjerenja na položaju A: pogonski ležaj centrifugalne crpke CA 2 Gradole dan je *Slikom 5.37.*

Slika 5.37 H odziv efektivnog ubrzanja vibracija na položaju A CA 2 Gradole

Iz *Slike 5.37* vidljiv je obrazac efekta plasta sijena nalik onome na položaju EM1, samo s nižom amplitudom. Uzrok efekta plasta sijena u ovom slučaju može biti moguća neispravnost na pogonskom ležaju 6226 C3 crpke, ali i prijenos sila pobude uslijed oštećenja i nekorektnosti tolerancija dosjeda pogonskog ležaja kaveznog motora na pogonski ležaj crpke.

Vremenski razvoj efekta plasta sijena oblikovanog na odzivu efektivnog ubrzanja vibracija mjerenja na položaju EM1 u smjeru H CA 2 Gradole vidljiv je iz *Slike 5.38.*

Slika 5.38 Kaskadni prikaz odziva efektivnog ubrzanja vibracija u smjeru H na položaju A CA 2 Gradole

Usporedbom *Slike 5.38* sa *Slikom 5.33* moguće je uočiti sinkroniziranost razvoja obrasca plasta sijena frekvencijskog spektra ubrzanja pogonskog ležaja crpke s razvojem vrlo sličnog obrasca u frekvencijskom spektru ubrzanja pogonskog ležaja kaveznog motora što ukazuje na uzročno - posljedičnu vezu ostvarenu posredstvom spojke.

Interpretacija analiziranih rezultata mjerenja vibracija na razini sustava CA 2 Gradole:

Intenziteti efektivnih brzina vibracija na svim položajima CA 2 Gradole usporedbom s referentnim vrijednostima ISO 10816 - 3 standarda (Tablica 4.3) upadaju u područje B - strojevi dovoljne razine ispravnosti za dugoročan rad. Najveći odzivi izmjerene efektivne brzine vibracija u H i V smjeru na svim položajima su na frekvencijama parcijalnih harmonika frekvencije mehaničke brzine vrtnje kao što je to već ranije navedeno. Omjer odziva efektivnih brzina vibracija u H i V smjeru je blizu jediničnog, što sugerira da uzrok vibracija nije uobičajena ekscentričnost rotora. Niska vrijednost odziva na osnovnu frekvenciju mehaničke brzine vrtnje uz navedeno poklapa se s dijagnostičkom slikom nekorektnosti tolerancija dosjeda pogonskog ležaja kaveznog motora s vratilom i/ili kućištem. Za dobivanje boljeg uvida u elektromagnetske parametre i stanje namota poželjno je provesti periodički nadzor električnih veličina. U frekvencijskom spektru envelope, ali i efektivne brzine vibracija postoji više naznaka neispravnosti pogonskog ležaja kaveznog motora: 6322 C3, te bi trebalo planirati aktivnosti održavanja za njegovu zamjenu prvom prigodom time bi se riješio i potencijalni problem neispravnih tolerancija dosjeda ležaja. S obzirom na naznaku neispravnosti pogonskog ležaja crpke 6226 C3, te obrasce plasta sijena u frekvencijskom spektru ubrzanja vibracija treba razmotriti provođenje periodičkog vibracijskog nadzora odmah po zamjeni pogonskog ležaja kaveznog motora. Na taj način utvrdio bi se utjecaj ispravnosti pogonskog ležaja kaveznog motora na ispravnost pogonskog ležaja crpke.

5.4.3 Analiza rezultata mjerenja vibracija CA 3 Gradole

Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorni pogon CA 3 crpne stanice Gradole prikazane su *Tablicom 5.13.*

Tablica 5.13 Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorni pogon CA 3 crpne stanice Gradole

$f_{nm} = \frac{n}{60}$	24,8 Hz
n	[24,8 Hz; 49,6 Hz; 74,4 Hz; 99,2 Hz; 124 Hz; 148,8
$f_{\rm er} = v \cdot \frac{\pi}{60}$	Hz; 173,6 Hz; 198,4 Hz; 223,2 Hz; 248 Hz; 272,8 Hz]
$f_{\rm šr} = \frac{n}{60} \& 2 \cdot \frac{n}{60}$	24,8 Hz & 49,6 Hz
$f_{\rm emp} = f_{\rm s} \mid 2 \cdot f_{\rm s}$	50 Hz 100 Hz
	[21,7 Hz & 27,9 Hz]; [46,14 Hz & 52,26 Hz]; [70,74 Hz
n n n n n n n n n n n n n n n n n n n	& 76,86 Hz]; [95,34 Hz & 101,46 Hz]; [119,94 Hz &
$r_{\rm emns} = v \cdot \frac{1}{60} \pm 2 \cdot p \cdot s \cdot r_{\rm s}$	126,06 Hz]; [144,54 Hz & 150,66 Hz]; [169,14 Hz &
	175,26 Hz]; [193,74 Hz & 199,86 Hz];

Vrijednosti navedenih karakterističnih frekvencija uslijed oštećenja ležaja dane su *Tablicom 5.14.* [31]

Tablica 5.14 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 3 Gradole

Gradole CA 3		Vrsta valj	nog ležaja	
Frekvencija pobude	6322/C3	7222 B	6226/C3	29326 E
f _{if} , Hz	147 Hz	226 Hz	130,7 Hz	267,8 Hz
f _{of} , Hz	101 Hz	170 Hz	91,5 Hz	226,1 Hz
<i>f</i> _{re} , Hz	130 Hz	132 Hz	135,6 Hz	187 Hz
f _{cg} , Hz	10,1 Hz	10,6 Hz	10,1 Hz	11,3 Hz

Vrijednosti efektivne brzine vibracija v_{RMS} , mm/s na frekvencijskom spektru 0 -1000 Hz za smjerove H i V na položajima: EM1, EM2 i A crpnog agregata CA 3 ne prelaze 0,9 mm/s. Najveći intenzitet odziva u iznosu od 0,88 mm/s na frekvenciji koja odgovara frekvenciji pobude uslijed neuravnoteženosti mase rotora: $f_{nm} = 24,8$ Hz izmjeren je na položaju EM2 u smjeru H sukladno *Slici 5.39.* [31]

Slika 5.39 Kaskadni prikaz H odziva efektivne brzine vibracija na položaju EM2 CA 3 Gradole

Jedini pokazatelj početne neispravnosti asimetrije magnetskog polja zračnog raspora kaveznog motora, te oštećenja vanjske staze prstena valjnog ležaja 7222 B na pogonskoj strani crpke je frekvencijski spektar envelope odziva ubrzanja vibracija H smjera položaja A: pogonski ležaj centrifugalne crpke CA 3 prikazan *Slikom 5.40*.

Slika 5.40 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položaju A CA 3 Gradole

Iz *Slike 5.40* vidljiv je kumulativni doprinos odziva efektivnog ubrzanja vibracija viših harmonika temeljne frekvencije pobude uslijed asimetrije magnetskog polja kaveznog motora: $f_{emp} = 100$ Hz, te frekvencije pobude uslijed oštećenja vanjske staze prstena valjnog ležaja 7222 B: $f_{of} = 170$ Hz. Navedeni kumulativni doprinosi odziva izrazito su malih iznosa, te ukazuju na sam početak neispravnosti.

Interpretacija analiziranih rezultata mjerenja vibracija na razini sustava CA 3 Gradole:

Intenziteti efektivnih brzina vibracija na svim položajima CA 3 Gradole usporedbom s referentnim vrijednostima ISO 10816 - 3 standarda (*Tablica 4.3*) upadaju u područje A - strojevi najviše razine ispravnosti. Nema potrebe za dodatnim aktivnostima održavanja i izvanrednim periodičkim vibracijskim nadzorima.

5.4.4 Analiza rezultata mjerenja vibracija CA 7 Gradole

Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorni pogon CA 7 prikazane su *Tablicom 5.15.*

Tablica 5.15 Karakteristične frekvencije sila pobude uslijed neispravnosti za
elektromotorni pogon CA 7

$f_{\rm nm} = \frac{n}{60}$	24,7 Hz
$f_{\rm er} = v \cdot \frac{n}{60}$	[24,7 Hz; 49,4 Hz; 74,1 Hz; 98,8 Hz; 123,5 Hz; 148,2 Hz; 172,9 Hz; 197,6 Hz; 223,3 Hz; 247 Hz; 271,7 Hz]
$f_{\rm šr} = \frac{n}{60} \& 2 \cdot \frac{n}{60}$	24,7 Hz & 49,4 Hz
$f_{\rm emp} = f_{\rm s} \mid 2 \cdot f_{\rm s}$	50 Hz 100 Hz
$f_{\text{emns}} = v \cdot \frac{n}{60} \pm 2 \cdot p \cdot s \cdot f_{\text{s}}$	[22,3 Hz & 27,1 Hz]; [47 Hz & 51,8 Hz]; [71,7 Hz & 76,5 Hz]; [96,4 Hz & 101,2 Hz]; [121,1 Hz & 125,9 Hz]; [145,8 Hz & 150,6 Hz]; [170,5 Hz & 175,3 Hz]; [195,2 Hz & 200 Hz]; [220,9 Hz & 225,7 Hz]; [244,6 Hz & 249,4 Hz]; [269,3 Hz & 274,1 Hz]

Karakteristične frekvencija sila pobuda uslijed oštećenja ležaja za CA 7 prikazane su *Tablicom 5.16.* [31]

Tablica 5.16 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 7 Gradole

Gradole CA 7	Vrsta valjnog ležaja	
Frekvencija pobude	6224/C3	7224 B
f _{if} , Hz	132 Hz	212 Hz
f _{of} , Hz	91,5 Hz	160 Hz
f _{re} , Hz	133 Hz	135 Hz
f _{cg} , Hz	10,2 Hz	10,7 Hz

Kaskadni prikaz odziva efektivne brzine vibracija v_{RMS}, mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju EM1: pogonski ležaj kaveznog motora crpnog agregata CA 7 Gradole prikazan je *Slikom 5.41.* [31]

Slika 5.41 Kaskadni prikaz H i V odziva efektivne brzine vibracija na položaju EM1 CA 7 Gradole

Kaskadni prikaz odziva efektivne brzine vibracija v_{RMS} , mm/s na frekvencijskom spektru 0 - 1000 Hz za smjerove H i V na položaju EM2: ležaj nasuprot pogonskom kaveznog motora crpnog agregata CA 7 Gradole prikazan je *Slikom 5.42.* [31]

Slika 5.42 Kaskadni prikaz H i V odziva efektivne brzine vibracija na položaju EM2 CA 7 Gradole

Iz kaskadnih prikaza sa *Slike 5.41* i *5.42* očit je značajan odziv efektivne brzine vibracija na frekvenciji jednakoj frekvenciji pobude uslijed neuravnoteženosti mase rotora: $f_{nm} = 24,7$ Hz. Amplituda odziva je $v_{RMS} = 3,2$ mm/s u smjeru H i $v_{RMS} = 2,2$ mm/s u smjeru V na položaju EM1, te $v_{RMS} = 11,2$ mm/s u smjeru H i $v_{RMS} = 7,1$ mm/s na položaju EM2.

Frekvencijski spektar envelope odziva ubrzanja vibracija H smjera položaja EM2: ležaj nasuprot pogonskom kaveznog motora CA 7 prikazan *Slikom 5.43.* [31]

Slika 5.43 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položaju EM2 CA 7 Gradole

Iz *Slike 5.43* vidljiv je doprinos odziva viših harmonika frekvencije pobude uslijed ekscentričnosti okretnog magnetskog polja $f_{emp} = 100$ Hz, što se može pripisati dinamičkoj ekscentričnosti rotora motora uzrokovanoj neuravnoteženom masom rotora.

Ostali frekvencijski spektri odziva na položajima ležajeva kaveznog motora i na položaju pogonskog ležaja crpke ne ukazuju na naznake mogućih neispravnosti.

Interpretacija analiziranih rezultata mjerenja vibracija na razini sustava CA 7 Gradole:

Intenziteti efektivnih brzina vibracija CA 7 Gradole usporedbom s referentnim vrijednostima ISO 10816 - 3 standarda (*Tablica 4.3*) upadaju u područje D - strojevi najniže razine ispravnosti koji daljnjim radom mogu prouzročiti ozbiljna oštećenja, potrebno odmah poduzeti korektivne mjere. Balansiranje rotora provedeno je odmah nakon dovršenog vibracijskog nadzora, postupak balansiranja nije uključen u opseg ovog rada.

5.4.5 Pregled stanja ispravnosti elektromotornih pogona i preporučenih aktivnosti održavanja

Pregled stanja ispravnosti svih pet elektromotornih pogona crpnih agregata na kojima je proveden periodički vibracijski nadzor dan je *Tablicom 5.17.*

Crpni agregat	Aktivnosti održavanja
CA 1 Sv. Stjepan	Utvrđivanje intervala podmazivanja za ležajeve centrifugalne crpke 7312 - B - XL - TVP - UA s NLGI 2 masti prema [32]. Daljnje praćenje stanja redovitim periodičkim vibracijskim nadzorom i nadzorom električnih veličina u cilju utvrđivanja točnije dijagnostičke slike. Stanje ispravnosti još uvijek pouzdano za dugotrajan rad.
CA 4 Sv. Stjepan	Prioritetno planiranje zamjene ležajeva crpke: 7312 - B - XL- TVP - UA s ležajevima: 6312 - C3 uz kontrolu tolerancija dosjeda. Preporučeni dosjedi ležaja s kućištem i vratilom dani su u Dodatku A [33], a moguće ih je dobiti i s pomoću [32]. Utvrđivanje intervala podmazivanja za ležajeve 6312 - C3 s NLGI 2 mazivom masti prema [32]. Odmah po zamjeni ležajeva provesti periodički vibracijski nadzor i nadzor električnih veličina, te po potrebi planirati centriranje spojke. Iako je stanje ispravnosti na donjoj granici najviše razine prema mjerenju vibracija, povremeno pregrijavanje ležaja crpke utvrđeno kontinuiranim toplinskim nadzorom dodatno pogoršava dijagnostičku sliku.

Tablica 5.17 Pregled stanja ispravnosti crpnih agregata i preporučene aktivnosti

CA 2 Gradole	Prioritetno planiranje zamjene ležajeva kaveznog motora: 6226 - C3 i 6319 M/C4VL0241 s identičnim ležajevima uz obaveznu kontrolu tolerancija dosjeda prema Dodatku A [33] i [32]. Odmah po zamjeni ležajeva provesti periodički vibracijski nadzor i nadzor električnih veličina u cilju utvrđivanja eventualnih neispravnosti namotaja. Stanje ispravnosti nije najviše razine i ukazuje na tendenciju pogoršanja unatoč tome što je pogon još uvijek dovoljne razine ispravnosti za dugotrajan rad.
CA 3 Gradole	Elektromotorni pogon ima minimalne naznake neispravnosti, te je kao takav savršen primjer elektromotornog pogona u najvišem stanju ispravnosti. Periodički vibracijski nadzor provoditi u redovnim ciklusima.
CA 7 Gradole	Elektromotorni pogon je uslijed izrazite neuravnoteženosti mase rotora neispravan za daljnji rad, nužno je postupak balansiranja provesti odmah po završetku nadzora. Preporučuje se provođenje periodičkog nadzora električnih veličina u cilju točnije evaluacije stanja ispravnosti namotaja kaveznog motora.

6. ZAKLJUČAK

Kroz praktični dio ovog rada teorija vibracija i topline kao pokazatelja različitih stanja neispravnosti pokazala se primjenjivom za interpretaciju rezultata mjerenja u sklopu provedenih nadzora. Periodičkim vibracijskim nadzorom provedenom na pet crpnih agregata dijagnosticirane su neispravnosti različite prirode: oštećenja ležajeva, nekorektnost tolerancija dosjeda ležaja s kućištem i vratilom, te neuravnoteženost mase rotora kao uzroci ekscentričnosti rotora. Asimetrija okretnog magnetskog polja i struja u namotajima utvrđena je kao uzročno-posljedična pojava ekscentričnosti, što ne iznenađuje s obzirom na fizikalnu sliku kaveznog motora razmatranu u drugom poglavlju. Uz određivanje postojanosti i karakteristika ekscentričnosti rotora, posebice pogodnom se ova vrsta nadzora pokazala za određivanje stanja ispravnosti ležajeva primjenom spektra envelope. Ipak, valja istaknuti kako primjena isključivo vibracijskog nadzora nije dovoljna za potpuno precizno i pouzdano utvrđivanje stanja ispravnosti elektromotornog pogona. Kontinuirani toplinski nadzor Pt - 100 sondom uz to što je njime ostvarena zaštita od temperaturnog preopterećenja može pružiti važnu informaciju o pregrijavanju namota kaveznog motora ili ležajeva CA, kao što je to bio slučaj s pogonskim ležajem crpke CA 4 Sv. Stjepan. Nadzor električnih veličina pružio bi pak puno detaliniji uvid u stanje namota i izolacije kaveznih motora. Na temelju rezultata mjerenja i njihove interpretacije, to jest nadzora moguće je planirati detaljnije aktivnosti održavanja kao što je to prikazano u potpoglavlju 5.4.5. Implementacijom cjelokupne strategije održavanja po stanju povećava se pouzdanost rada crpnih stanica i iskorištenje životnog vijeka komponenata strojeva. Mišljenja sam da implementacija kontinuiranog vibracijskog nadzora nije potrebna zbog poznate prošlosti dijagnostičkih slika, te redundantnosti dimenzioniranog kapaciteta crpnih stanica. Smatram da bi periodički vibracijski nadzor trebalo provesti sinkronizirano s periodičkim nadzorom električnih veličina. Uz to, kontinuiranim praćenjem trendova temperatura pojedinih komponenata dobivenih kontinuiranim toplinskim nadzorom i kroz periode kada se zaštita od pregrijavanja ne pokreće dobio bi se uvid u trendove vrijednosti lokalnih temperatura ležajeva CA i namota kaveznog motora u sklopu agregata. Time bi se olakšala interpretacija rezultata periodičkog mjerenja vibracija, te bi dijagnostička slika utvrđenog stanja ispravnosti elektromotornog pogona crpke bila točnija i pouzdanija.

Literatura

- [1] Šušnjić L.: "Predavanja iz kolegija Elektromotorni pogoni", Tehnički fakultet u Puli, Pula, 2021.
- [2] Toliyat H.A.; Nandi S.; Choi S.; Meshgin-Kelk H.: "Electric machines modeling, condition monitoring and fault diagnosis" CRC Press, Taylor&Francis Group, 6000 Broken Sound Parkway NW, Boca Raton, FL 33487-2742, 2013.
- [3] <u>https://www.grandviewresearch.com/industry-analysis/electric-motor-market</u>, Pristupljeno 03.04.2023.
- [4] Hand A.: "Electric motor maintenance and troubleshooting", The McGraw-Hill Companies, 1325 Avenue of the Americas, New York, NY 10019, 2011.
- [5] Žarko D.: "Asinkroni strojevi i pogoni", predavanja iz kolegija Elektromehaničke i električne pretvorbe energije, Fakultet elektrotehnike i računarstva, Zagreb, 2010.
- [6] Srb N.: "Magnetski monitoring električnih rotacijskih strojeva", Graphis, Zagreb, 2004.
- [7] de Silva C.W.; Mechefske C.K. et al.: "Vibration and Shock Handbook" CRC Press, Taylor&Francis Group, Boca Raton, 2005.
- [8] Gieras J.F.: "Noise of polyphase electric motors" CRC Press, Taylor&Francis Group, 6000 Broken Sound Parkway NW, Boca Raton, FL 33487-2742, 2006.
- [9] Podhorski R.; Požar H.; Sirotić Z.; Smolčić Z.; Wolf R.: "Tehnička enciklopedija 4. svezak", Leksikografski zavod Miroslav Krleža, Zagreb, 1976.
- [10] Podhorski R.; Karabaić V.; Požar H.; Haznadar Z.: "Tehnička enciklopedija 5. svezak", Leksikografski zavod Miroslav Krleža, Zagreb, 1976.

[11] Jadrić M.; Frančić B.: "Dinamika električnih strojeva", Graphis, Zagreb, 1997.

- [12] National Electrical Manufacturers Association: "NEMA MG 10-2017: Energy Management Guide for Selection and Use of Fixed Frequency Medium AC Squirrel-Cage Polyphase Induction Motors", Rosslyn, 2017.
- [13] Končar-MES d.d.: "Katalog Elektromotori IEC 60034", Zagreb, 2019.
- [14] National Electrical Manufacturers Association: NEMA MG 1- Motors and Generators, Rosslyn, 2022.
- [15] Siemens: "Three-Phase Induction Motors SIMOTICS HV, SIMOTICS TN Series H-compact", D 84.1, 2019.
- [16] Bhatia A.: "Understanding Motor Nameplate Information NEMA vs IEC Standard", Continuing Education and Development Inc., 2022.
- [17] Petrinić M.: "Sprega elektromotornih sila i vibracija statorskog paketa sinkronog generatora", Doktorski rad, Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, Zagreb, 2019.
- [18] Mathes S.; Werner U.; Bauer C.: "Numerical and experimental vibration analysis of a two-pole induction motor mounted on an elastic machine test bed", *ISMA Conference*, Leuven, 2018.
- [19] Adams, Jr., M.L.:"Rotating machinery vibration: From analysis to troubleshooting", CRC Press, Taylor&Francis Group, Boca Raton, 2010.
- [20] Fischer, D.; et al.: "Effect of Over rolling frequency on the film formation in grease lubricated EHD contacts under starved conditions", *Lubricants* 7 (19), 2019.
- [21] Stevens, D.: "Vibration Analysis Pinpoints Inadequate Motor Bearing Lubrication", *Practicing Oil Analysis Magazine (5/2004)*, 2004.g.

[22] International Organization for Standardization: ISO 10816-3 Mechanical vibration - Evaluation of machine vibration by measurements on non-rotating parts Part 3: Industrial machines with nominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measured in situ, 1998.

- [23] Jones R.M.: "Enveloping for Bearing Analysis", SKF Condition Monitoring, San Diego, 1996.
- [24] Wells C.: "Signal Conditioning and Linearization of RTD Sensors", Texas Instruments, 2011.
- [25] Infraspection Institute: "Standard for Infrared Inspection of Electrical Systems & Rotating Equipment", Burlington, 2008. g.
- [26] Koschan A.; et al: "Thermal Modeling and Imaging of As-built Vehicle Components, SAE 2006 World Congress", SAE SP-2040, Detroit, MI, SAE Technical Paper 2006-01-1167, 2006.g.
- [27] Izvor informacija: Istarski vodovod Buzet d.o.o.
- [28] SKF Inc.: "Vibration Sensor Catalogue", San Diego, 2022.
- [29] SKF Inc.: "Microlog AX Series User Manual", San Diego, 2015.
- [30] Hodej B.: "Poročilo o redni meritvi vibracija u crpnoj stanici Sv. Stjepan", Kalmer d.o.o., Trbovlje, 2023.
- [31] Hodej B.: "Poročilo o redni meritvi vibracija u crpnoj stanici Gradole", Kalmer d.o.o., Trbovlje, 2023.
- [32] <u>https://skfbearingselect.com/</u> Pristupljeno: 01.09.2023.
- [33] Axis Bearing: Ball Bearings Catalog, 2012.

Popis slika

Slika 2.1 Silnice magnetskog polja na presjeku četveropolnog asinkronog motora	. 5
Slika 2.2 Presjek asinkronog kaveznog motora	. 8
Slika 2.3 Utor statorskog paketa s uloženim izoliranim namotima	. 8
Slika 2.4 Rotorski namot kaveznog motora	10
Slika 2.5 Shematski prikaz kaveznog namota	13
Slika 2.6 Međusobni položaj osi faznih namota statora i petlji rotorskog kaveza	14
Slika 2.7 Rezultantni vektor jakosti magnetskog polja u zračnom rasporu [10]	18
Slika 2.8 Potpuna momentna karakteristika	21
Slika 2.9 Karakteristične točke momentne karakteristike motora	21
Slika 2.10 Momentne karakteristike različitih izvedbi	23
Slika 2.11 Strujanje zraka IC411 izvedbe samo-ventilirajućeg sustava hlađenja	27
Slika 2.12 Izvedeni oblici kaveznih motora prema IEC 60043	28
Slika 2.13 Označavanje visine osi kaveznog motora	29
Slika 3.1 Statička i dinamička ekscentričnost rotora kaveznog motora	39
Slika 3.2 Geometrijske karakteristike valjnih ležajeva	44
Slika 3.3 Podmazivanje valjnog ležaja mazivom masti	46
Slika 3.4 Primjer manifestacije efekta plasta sijena u frekvencijskoj domeni	47
Slika 4.1 Grafički prikaz načela strategije održavanja po stanju	51
Slika 4.2 Blok shema glavnih aktivnosti strategije održavanja po stanju	52
Slika 4.3 Tijek periodičnog vibracijskog nadzora	53
Slika 4.4 Položaji mjerenja vibracija u sustavu elektromotornog pogona	53
Slika 4.5 Smjerovi postavljanja senzora vibracija na položajima mjerenja	56
Slika 4.6 Različite izvedbe senzora brzine vibriranja	57
Slika 4.7 Izvedba mehaničkog akcelerometra	59

Slika 4.8 Ekvivalentni krug piezoelektričnog senzora ubrzanja61
Slika 4.9 Ekvivalentni krug piezoelektričnog senzora spojenog na pojačalo 62
Slika 4.10 Frekvencijski spektar odziva efektivne brzine vibriranja ležajeva 64
Slika 4.11 Spektar envelope s granicama filtra na 500 Hz i 10000 Hz 64
Slika 4.12 Kaskadni prikaz frekvencijskog spektra odziva vibracija pri pokretanju elektromotornog pogona
Slika 4.13 Primjer izvedbe Pt - 100 Sonde 68
Slika 4.14 Zavisnost otpora o temperaturi Pt - 100 sonde 68
Slika 4.15 Osnovni strujni krug Pt - 100 sonde 69
Slika 4.16 Digitalna linearizacija pri mjerenju temperature Pt-100 sondom
Slika 4.17 Blok shema termografske kamere 70
Slika 4.18 Izlazni rezultat periodičkog nadzora turbogeneratora termografijom 71
Slika 5.1 Crpni agregat 3 i 4 crpne stanice Sv. Stjepan
Slika 5.2 Crpna stanica Gradole
Slika 5.3 Izvedba SKF CMSS2200 akcelerometra 81
Slika 5.4 SKF Microlog Analyzer AX vanjska jedinica za obradu signala 82
Slika 5.5 Karakteristični položaji i smjerovi mjerenja vibracija CA crpne stanice Sv. Stjepan
Slika 5.6 Mjerenje vibracija u smjeru H na položaju EM1 CA 1 crpne stanice Sv. Stjepan
Slika 5.7 Mjerenje vibracija u smjeru H na položaju EM2 CA 1 crpne stanice Sv. Stjepan
Slika 5.8 Mjerenje vibracija u smjeru H na položaju A CA 4 crpne stanice Sv. Stjepan 85
Slika 5.9 Mjerenje vibracija u smjeru H na položaju B CA 4 crpne stanice Sv. Stjepan

Slika 5.10) Karakteristični položaji i smjerovi mjerenja vibracija CA crpne stanice Gradole
Slika 5.11	Mjerenje vibracija u smjeru H na položaju EM1 CA 2 crpne stanice Gradole
Slika 5.12	Mjerenje vibracija u smjeru H na položaju EM2 CA 2 crpne stanice Gradole
Slika 5.13	Mjerenje vibracija u smjeru V na položaju EM2 CA 7 crpne stanice Gradole
Slika 5.14	Mjerenje vibracija u smjeru H na položaju A CA 2 crpne stanice Gradole 88
Slika 5.15	Mjerenje vibracija u smjeru V na položaju A CA 2 crpne stanice Gradole 89
Slika 5.16	Mjerenje vibracija u smjeru H na položaju A CA 7 crpne stanice Gradole 89
Slika 5.17	Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju EM1 CA 1 Sv. Stjepan
Slika 5.18	Kaskadni prikaz H odziva efektivne brzine vibriranja na položaju EM2 CA 1 Sv. Stjepan
Slika 5.19	Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima EM1 i EM2 CA 1 Sv. Stjepan
Slika 5.20	Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju A CA 1 Sv. Stjepan
Slika 5.21	H odziv efektivnog ubrzanja vibracija na položajima A i B CA 1 Sv. Stjepan 96
Slika 5.22	Prikaz frekvencijskog spektra H i V odziva efektivne brzine vibriranja na položaju EM1 CA 4 Sv. Stjepan
Slika 5.23	Kaskadni prikaz H odziva efektivne brzine vibriranja na položaju EM2 CA 4 Sv. Stjepan
Slika 5.24	Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima EM1 i EM2 CA 4 Sv. Stjepan

Slika 5.25	Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju A CA 4 Sv. Stjepan
Slika 5.26	Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju B CA 4 Sv. Stjepan
Slika 5.27	Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima A i B CA 4 Sv. Stjepan
Slika 5.28	H odziv efektivnog ubrzanja vibracija na položajima A i B CA 4 Sv. Stjepan
Slika 5.29	Kaskadni prikaz odziva efektivnog ubrzanja vibracija u smjeru H na položaju A CA 4
Slika 5.30	Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju EM1 CA 2 Gradole
Slika 5.31	Kaskadni prikaz H i V odziva efektivne brzine vibriranja na položaju EM2 CA 2 Gradole
Slika 5.32	Frekvencijski spektar envelope H odziva ubrzanja vibracija na položajima EM1 i EM2 CA 2 Gradole
Slika 5.33	B H odziv efektivnog ubrzanja vibracija na položajima EM1 i EM2 CA 2 Gradole
Slika 5.34	Kaskadni prikaz odziva efektivnog ubrzanja vibracija u smjeru H na položaju EM1 CA 2 Gradole
Slika 5.35	Kaskadni prikaz H i V odziva efektivne brzine vibracija na položaju A CA 2 Gradole
Slika 5.36	Frekvencijski spektar envelope H odziva ubrzanja vibracija na položaju A CA 2 Gradole
Slika 5.37	H odziv efektivnog ubrzanja vibracija na položaju A CA 2 Gradole 114
Slika 5.38	Kaskadni prikaz odziva efektivnog ubrzanja vibracija u smjeru H na položaju A CA 2 Gradole
Slika 5.39 Kaskadni prikaz H odziva efektivne brzine vibracija na položaju EM2 CA 3	

Gradole	
Slika 5.40 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položaju A	
CA 3 Gradole 118	
Slika 5.41 Kaskadni prikaz H i V odziva efektivne brzine vibracija na položaju EM1 CA	
7 Gradole 121	
Slika 5.42 Kaskadni prikaz H i V odziva efektivne brzine vibracija na položaju EM2 CA	
7 Gradole 122	
Slika 5.43 Frekvencijski spektar envelope H odziva ubrzanja vibracija na položaju EM2	
CA 7 Gradole 123	

Popis tablica

Tablica 2.1	NEMA i IEC klasifikacija izvedbi asinkronih motora prema momentnim karakteristikama
Tablica 2.2	IEC 60085 klasifikacija toplinske izolacije 23
Tablica 2.3	Klasifikacija vrsti pogona prema IEC 60034-124
Tablica 2.4	Razredi stupnja korisnosti za kavezne motore 200-1000 kW 26
Tablica 2.5	Klasifikacija izvedbi sustava hlađenja prema NEMA i IEC 26
Tablica 2.6	Značenje numeričkih oznaka A i B IP klasifikacije stupnja zaštite 29
Tablica 3.1	Usporedba karakteristika vibracija uslijed neuravnoteženosti mase rotora i ekscentričnosti rotora
Tablica 4.1	Maksimalno dopuštene vrijednosti vibracija za grupe strojeva 1 i 3 55
Tablica 4.2	Maksimalno dopuštene vrijednosti vibracija za grupu strojeva 2 55
Tablica 4.3	Nabojne osjetljivosti različitih vrsta piezoelektričnih materijala 60
Tablica 4.4	Prednosti i nedostaci kontaktnih senzora temperature
Tablica 4.5	Primjer iskustvenog ΔT kriterija
Tablica 5.1	Tehničke karakteristike kaveznih motora crpnih agregata crpne stanice Sv. Stjepan
Tablica 5.2	Tehničke karakteristike centrifugalnih crpki crpnih agregata crpne stanice Sv. Stjepan
Tablica 5.3	Tehničke karakteristike kaveznih motora crpnih agregata Grupe 1: CA 1 i CA 2 crpne stanice Gradole
Tablica 5.4	Tehničke karakteristike kaveznih motora crpnih agregata Grupe 2 crpne stanice Gradole
Tablica 5.5	Tehničke karakteristike centrifugalnih crpki crpnih agregata Grupe 1 i Grupe 2 crpne stanice Gradole
Tablica 5.6	Tehničke karakteristike kaveznih motora crpnih agregata Grupe 3 crpne stanice Gradole

Tablica 5.7 Tehničke karakteristike centrifugalnih crpki crpnih agregata Grupe 3 80
Tablica 5.8 Specifikacije akcelerometra SKF CMSS2200 81
Tablica 5.9 Karakteristične frekvencije pobude uslijed neispravnosti kaveznog motora CA 1 i CA 4 crpne stanice Sv. Stjepan
Tablica 5.10 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 1 i CA 4 Sv. Stjepan
Tablica 5.11 Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorni pogon CA 2 crpne stanice Gradole
Tablica 5.12 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 2 Gradole
Tablica 5.13 Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorni pogon CA 3 crpne stanice Gradole
Tablica 5.14 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 3 Gradole
Tablica 5.15 Karakteristične frekvencije sila pobude uslijed neispravnosti za elektromotorni pogon CA 7
Tablica 5.16 Vrijednosti karakterističnih frekvencija pobuda uslijed oštećenja ležajeva za CA 7 Gradole
Tablica 5.17 Pregled stanja ispravnosti crpnih agregata i preporučene aktivnosti 124

Popis oznaka

Opis oznake	Oznaka i mjerna jedinica
Prostorni vektor magnetske indukcije	<i>В</i> , Н
Prostorni vektor magnetske indukcije u zračnom rasporu	$\overrightarrow{B_{\rm sr}}$, H
Prostorni vektor elektromagnetske sile	$\overrightarrow{F_{e}}$, N
Prostorni vektor jakosti magnetskog polja	<i>H</i> , A/m
Prostorni vektor elemenata vodiča rotora kroz koji protječu rotorske struje	<i>I</i> _r · d <i>l</i> , Am
Prostorni vektor elektromagnetskog momenta	<i>M</i> _e , Nm
Jedinični vektor pomaka od vodiča statora do rotorskog štapa	<i>ř</i> ₀ , m
Vektor površine obuhvaćene magnetskim silnicama	, m²
Dijagonalna matrica pri gušenja dinamičkog sustava	[Ĉ]
Matrica prigušenja dinamičkog sustava	[C]

Dijagonalna matrica krutosti dinamičkog sustava	[
Matrica krutosti dinamičkog sustava	[K]
Matrica induktiviteta kaveznog namota	[<i>L</i> _r]
Matrica međuinduktiviteta rotorski kavez - statorski namot	[<i>L</i> _{rs}]
Dijagonalna matrica mase dinamičkog sustava	[Â]
Matrica mase dinamičkog sustava	[M]
Matrica svojstvenih vrijednosti dinamičkog sustava	[ω²]
Svojstveni vektor(vektor prirodnih oblika vibriranja) dinamičkog sustava	{ A }
Vremenski promjenjiv vektor sila pobude dinamičkog sustava	{ F(t) }
Vektor struja prstena rotorskog kaveza	{ <i>i</i> _r }
Vektor struja statorskog namota	{ <i>i</i> _s }
Vektor početnog uvjeta brzine iskazan poopćenom koordinatom	{ ġ (0) }

Vektor početnog uvjeta pomaka iskazan poopćenom koordinatom	{ q(0) }
Vektor akceleracije dinamičkog sustava	{ÿ}
Vektor početnog uvjeta brzine dinamičkog sustava	{ ý (0) }
Vektor pomaka dinamičkog sustava	{ y }
Vektor početnog uvjeta pomaka dinamičkog sustava	{ y(0) }
Vektor elektromagnetskog momenta	{ <i>M</i> _e }
Ubrzanje akcelerometra	<i>a</i> , m/s ²
Efektivno ubrzanje vibracija	a _{RMS} , m/s ²
Površina zračenja	$A_{\rm z}$, m ²
Ekvivalentni kapacitet	C, µF
Kapacitet kabela piezoelektričnog senzora	C _c , μF
Kapacitet povratne veze piezoelektričnog senzora, µF	<i>C</i> _f , μF
Rayleighovi koeficijenti prigušenja	c _m , c _k

Faktor snage	$\cos \varphi$
Srednji promjer kaveznog motora na zračnom rasporu	<i>d</i> , mm
Promjer valjnog elementa ležaja	D _b , mm
Srednji promjer kaveza ležaja	D _c , mm
Inducirani električni napon	e, V
Napon rotacije	e _r , V
Napon transformacije	e _t , V
Vanjska sila koja djeluje na akcelerometar	<i>F</i> , N
Frekvencija sile pobude uslijed oštećenja kaveza valjnog ležaja	f _{cg} , Hz
Frekvencija sile pobude uslijed asimetrije okretnog magnetskog polja i neuravnoteženosti struja namotaja	f _{emns} , Hz
Frekvencija sile pobude uslijed asimetrije okretnog magnetskog polja	f _{emp} , Hz
Frekvencija sile pobude uslijed ekscentričnosti rotora	f _{er} , Hz

Frekvencija sile pobude pri oštećenju unutarnje staze prstena valjnog ležaja	f _{if} , Hz
Frekvencija mehaničke brzine vrtnje	<i>f</i> _m , Hz
Frekvencija sile pobude uslijed neuravnoteženosti mase rotora	f _{nm} , Hz
Frekvencija sile pobude pri oštećenju vanjske staze prstena valjnog ležaja	f _{of} , Hz
Frekvencija sile pobude pri prolazu lopatica centrifugalne crpke	f _{pl} , Hz
Frekvencija sile pobude uslijed oštećenja valjnog elementa ležaja	f _{re} , Hz
Frekvencija sile pobude uslijed loma rotorskih štapova	f _{šr} , Hz
Sila trenja	<i>F</i> _{tr} , N
Električna struja	<i>I</i> , A
Izmjenična struja <i>a</i> faze statorskog namota	i _{as} , A
Izmjenična struja <i>b</i> faze statorskog namota	i _{bs} , A

Izmjenična struja c faze statorskog namota	i _{cs} , A
Vlastita struja uzbude i - tog namota	i, A
Struja uzbude ostalih j namota	i _j , A
Nazivna struja elektromotora	<i>I</i> _N , А
Struja rotorske petlje µ = 1…Q _r -1	<i>i</i> _μ , Α
Struja rotorskog štapa μ = 1…Q _r -1	i _{µšt} , A
Faktor pojačanja piezoelektričnog senzora	К
Dielektrična konstanta	k _{di} , F/m
Ekvivalentna duljina stroja	<i>l</i> _e , mm
Samoinduktivitet i - tog namota	<i>L</i> _i , Н
Međuinduktivitet i - tog namota s ostalim namotima	<i>L</i> _{ij} , Н
Glavni induktivitet rotorske petlje	L _{rr} , H
Međuinduktivitet rotorske petlje i faze statorskog namota u trenutku poklapanja osi	I _{rs} , H

Duljina svitka	l _{sv} , mm
Međuinduktivitet rotorski kavez - a faza statorskog namota	L _{µas} , H
Međuinduktivitet rotorski kavez - b faza statorskog namota	L _{µbs} , H
Međuinduktivitet rotorski kavez - c faza statorskog namota	L _{µcs} , H
Rasipni induktivitet kratkospojnog prstena	L _{σpr} , Η
Rasipni induktivitet rotorskog štapa, H	$L_{\sigma ext{st}}, H$
Masa akcelerometra	<i>m</i> , g
i - ta modalna masa dinamičkog sustava	<i>M</i> _i , kg
Nazivni moment u radnoj točki	<i>M</i> _n , Nm
Potezni moment	<i>M</i> _p , Nm
Prekretni moment	<i>M</i> _{pr} , Nm
Moment sedla	<i>M</i> _s , Nm
Broj okretaja rotora u minuti pri mehaničkoj brzini vrtnje	<i>n</i> , min ⁻¹

Broj valjnih elemenata u ležaju	N _b
Broj lopatica pojedinog stupnja rotora centrifugalne crpke	NL
Nazivni broj okretaja rotora crpke u minuti	n _N , min⁻¹
Broj okretaja u minuti pri relativnoj brzini vrtnje okretnog polja prema rotoru	<i>n</i> _r , min ⁻¹
Efektivni broj zavoja statorskog namota	N _s · k _{ws}
Broj okretaja u minuti pri sinkronoj brzini vrtnje	n _s , min⁻¹
Broj pari polova	p
Izlazna snaga elektromotora	P _{iz} , W
Nazivna snaga elektromotora	P _N , W
Ulazna snaga elektromotora	P _{ul} , W
i - ti modalni odziv dinamičkog sustava po poopćenoj koordinati	$q_{_{ m i}}$
Toplina oslobođena uslijed Jouleovih gubitaka pri protjecanju struje	Q _{jg} , W
Broj rotorskih petlji	Q _r

Toplina oslobođena uslijed trenja	Q _{tr} , W
Intenzitet toplinskog zračenja	Q _z , W
Električni otpor	<i>R,</i> Ω
Električni otpor povratne veze piezoelektričnog senzora	<i>R</i> _f , Ω
Parametar klizanja	S
Prividna snaga elektromotora	S _N , kVA
Nabojna osjetljivost	S _q , pC/N
Naponska osjetljivost	S _v , mV ⋅ s²/m
Faktor pogona	SF
Temperatura površine zračenja	<i>Т</i> _z , К
Nazivni napon elektromotora	U _N , V
Izlazni napon signala piezoelektričnog senzora	<i>U</i> _o , mV
Emitirani napon akcelerometra uslijed piezoelektričnog efekta	U _{sa} , V
Inducirani napon mjernog svitka	U _{sv} , V

Relativna brzina gibanja pomičnog dijela senzora uslijed vibriranja	v _{rel} , m/s
Efektivna brzina vibracija	v _{RMS} , mm/s
Brzina gibanja pri trenju	v _{tr} , m/s
Impedancija piezoelektričnog senzora ubrzanja	Ζ, Ω
Geometrijski kut između dviju susjednih petlji rotorskog kaveza	α _r , rad
Kut kontakta valjnog elementa	β, rad
Koeficijent pretvorbe trenja u toplinsku energiju	Γ
Zračni raspor između statora i rotora	δ, mm
Ukupni stupanj korisnosti kaveznog motora	η _{uk}
Električni kut zakreta rotora	<i>ϑ</i> , rad
Kut mehaničkog zakreta rotora	$\boldsymbol{\vartheta}_{m}, rad$
Magnetska permeabilnost zraka	μ, H/m
Magnetska permeabilnost vakuuma	μ_0 , H/m

Redni broj višeg harmonika frekvencije vibriranja	V
Faktor modalnog prigušenja	ξ _i
Stefan - Boltzmannova konstanta	σ, W/(m ² ·K ⁴)
Ulančani magnetski tok, Wb	$oldsymbol{arPsi}$, Wb
Ukupni ulančani magnetski tok <i>i</i> - tog namota	$oldsymbol{arPsi}_{i}$, Wb
Ukupni ulančani magnetski tok µ - te rotorske petlje	$oldsymbol{arPsi}_{\mu}$, Wb
Kružna prirodna frekvencija	ω_{i} , rad/s
Prigušena kružna prirodna frekvencija	$\omega_{\sf d}$, rad/s
Kružna frekvencija mjerenih vibracija	$\omega_{\rm mv}$, rad/s

Popis kratica

Kratica	Značenje		
A	Položaj mjerenja vibracija na pogonskom ležaju centrifugalne crpke		
В	Položaj mjerenja vibracija na ležaju centrifugalne crpke nasuprot pogonskom		
CA	Crpni agregat		
EM1	Položaj mjerenja vibracija na pogonskom ležaju kaveznog motora		
EM2	Položaj mjerenja vibracija ležaju kaveznog motora nasuprot pogonskom		
FFT	en. Fast Fourier transform		
Н	Horizontalan smjer mjerenja vibracija na određenom položaju CA		
IEC	en. International Electrotechnical Commission		
NEMA	en. National Electrical Manufacturers Association		

PLC	en. Programmable logic controller
RMS	en. Root mean squared
SCADA	en. Supervisory control and data acquisition
V	Vertikalan smjer mjerenja vibracija na određenom položaju CA

PRILOZI

Dodatak A: Preporučeni dosjedi ležaja s kućištem i vratilom

Conditions	Examples of Application	Tolerance	Displacement of Outer Ring	
Rotating Inner Ring				
Loads of all kinds	General bearing applications, railroad axle bearing	H61	Can be displaced	
Light and normal loads (P \leq 0.12C) with simple working conditions	General bearing applications, gear transmission	H8	Can be displaced	
Heat conduction through shaft	Drying cylinders	G72	Can be displaced	
Indeterminate Direction Load*				
Light and normal loads (P \leq 0.12C) axial displacement of outer ring desirable	Medium-sized electrical machines, pumps, crankshaft bearings	J7	Can usually be displaced	
Heavy shock loads	Traction motors	M7	Cannot be displaced	
Normal and heavy loads (P> 0.06C). Axial displacement of outer ring unnecessary	Electric motors, pumps, crankshaft bearings	К7	Cannot usually be displaced	
Stationary Inner Ring				
Normal and heavy loads (P> 0.06C)	Ball bearing wheel hubs, big end bearings.	N7	Cannot be displaced	
Light and variable loads (P \leq 0.06C)	Conveyor rollers, pulleys, tension pulleys	M7	Cannot be displaced	
Accurate or Quiet Running ³				
Light Loads	Small electric motors	J6 ²	Can be displaced	

"Variable external loads, shock loads, and vibratory and unbalanced loads in high-speed machinery cannot be accurately described and are classified as "indeterminate direction load"

 1 For large bearings (D > 250mm) and temperature difference between outer ring and housing > 10°C, use G7. 2 For large bearings (D > 250mm) and temperature difference between outer ring and housing > 10°C, use F7.

³Not applicable to high precision bearings

Conditions	Examples of Application	Shaft Diameter, MM Ball Bearings	Shaft Fit	Remarks
Rotating Inner Ring or Indetermi	inate Direction Load*			
Light and variable loads (P \leq 0.06C)	Conveyors, light loaded gearbox bearings, electrical appliances, machine tools, pumps, blowers, etc.	(18) to 100 (100) to 140	j6 k6	For high precision applications use j5 and k5.
Normal and heavy loads (P>0.06C)	General bearing applications, electric motors, turbines, pumps, internal combustion engines, gearing, wood- working machines etc.	≤18 (18) to100 (100) to 140 (140) to 200 (200) to 280	j5 k5(k6) m5(m6) m6 n6	The tolerances in brackets are generally used for single-row angular contact ball bearings. May also be used for other bearing types where speeds are moderate and the effect on internal clear- ance variation due to fit need not be considered.
High demands on running accuracy with light loads ($P \le 0.06C$)	Machine Tools	≤18 (18) to100 (100) to 200	h5 j5 k5	The tolerances listed are not applicable to high precision bearings.
Stationary Inner Ring	1			
Easy axial displacement of inner ring on shaft desirable	Stationary shaft wheels		g6	For high precision applications use g5
Easy axial displacement of inner ring on shaft unnecessary	Tension pulleys, rope sheaves etc.		h6	For high precision applications use h5
Thrust Loads Only				
Bearing Applications of all kinds			j6	

"Variable external loads, shock loads, and vibratory and unbalanced loads in high-speed machinery cannot be accurately described and are classified as "indeterminate direction load"